Skip to main content
Log in

Local study of helical magnetorotational instability in viscous Keplerian disks

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

In this paper, regarding the recent detection of significant azimuthal magnetic field in some accretion disks such as protostellar (Donati et al. in Nature 438:466, 2005), the multi-fluid model has been employed to analysis the stability of Keplerian rotational viscous dusty plasma system in a current-free helical magnetic field structure. Using the fluid-Maxwell equations, the general dispersion relation of the excited modes in the system has been obtained by applying the local approximation method in the linear perturbation theory. The typical numerical analysis of the obtained dispersion relation in the high-frequency regime shows that the presence of azimuthal magnetic field component in Keplerian flow has a considerable role in the stability conditions of the system. It also shows that the magnetic field helicity has a stabilization role against the magnetorotational instability (MRI) in the system due to contraction of the unstable wavelength region and decreasing the maximum growth rate of the instability. In this sense, the stabilization role of the viscosity term is more considerable for HMRI (instability in the presence of azimuthal magnetic field component) than the corresponding MRI (instability in the absence of azimuthal magnetic field component). Moreover, considering the discovered azimuthal magnetic field in these systems, the MRI can be arisen in the over-all range of dust grains construction values in contract with traditional MRI. This investigation can greatly contribute to better understanding the physics of some astrophysical phenomena, such as the main source of turbulence and angular momentum transport in protostellar and the other sufficiently ionized astrophysical disks, where the azimuthal magnetic field component in these systems can play a significant role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Balbus, S.A.: Annu. Rev. Astron. Astrophys. 41, 555 (2003)

    Article  ADS  Google Scholar 

  • Balbus, S.A., Hawley, J.F.: Astrophys. J. 376, 214 (1991)

    Article  ADS  Google Scholar 

  • Balbus, S.A., Hawley, J.F.: Rev. Mod. Phys. 70, 1 (1998)

    Article  ADS  Google Scholar 

  • Ciolek, G.E., Mouschovias, T.: Astrophys. J. 418, 774 (1993)

    Article  ADS  Google Scholar 

  • Donati, J., Paletou, F., Bouvier, J., Ferreira, J.: Nature 438, 466 (2005)

    Article  ADS  Google Scholar 

  • Hollerbach, R., Rudiger, G.: Phys. Rev. Lett. 95, 124501 (2005)

    Article  ADS  Google Scholar 

  • Lakin, V.P., Velikhov, E.P.: Phys. Lett. A 369, 98 (2007)

    Article  ADS  Google Scholar 

  • Mendis, D.A., Rosenberg, M.: Annu. Rev. Astron. Astrophys. 32, 410 (1994)

    Article  ADS  Google Scholar 

  • Mikhailovskii, A.B., Lominadze, J.G., Churikov, A.P., Erokhin, N.N., Tsypin, V.S., Smolyakov, A.I., Galvão, R.M.O.: Phys. Plasmas 14, 082302 (2008a)

    Article  ADS  Google Scholar 

  • Mikhailovskii, A.B., Lominadze, J.G., Churikov, A.P., Erokhin, N.N., Pustovitov, V.D., Konovalov, S.V.: Plasma Phys. Rep. 34, 837 (2008b)

    Article  ADS  Google Scholar 

  • Mikhailovskii, A.B., Lominadze, J.G., Churikov, A.P., Pustovitov, V.D., Tsypin, V.S., Smolyakov, A.I., Erokhin, N.N., Kharshiladze, O.A.: Plasma Phys. Control. Fusion 50, 085015 (2008c)

    Article  ADS  Google Scholar 

  • Mikhailovskii, A.B., Lominadze, J.G., Galvão, R.M.O., Churikov, A.P., Kharshiladze, O.A., Erokhin, N.N., Amador, C.H.S.: Phys. Plasmas 15, 052103 (2008d)

    Article  ADS  Google Scholar 

  • Nakan, T., Nishi, R., Umebayashi, T.: In: Kaufle, H.U., Siebenmorgen, R. (eds.) The Role of Dust in the Formation of Stars, Proceedings ESO Workshop Garching, 11–14 September, 1995, p. 393 (1996)

    Chapter  Google Scholar 

  • Noguchi, K., Pariev, V.I., Colate, S.A., Nordhaus, J., Beckley, H.F.: Astrophys. J. 575, 1151 (2002)

    Article  ADS  Google Scholar 

  • Ren, H.J., Wu, Z.W., Cao, J.T., Chu, P.K.: Phys. Plasmas 16, 122107 (2009)

    Article  ADS  Google Scholar 

  • Ren, H., Cao, J., Wu, Z., Chu, P.K.: Plasma Phys. Control. Fusion 53, 065021 (2011)

    Article  ADS  Google Scholar 

  • Rudiger, G., Hollerbach, R., Schultz, M., Shalybkov, D.A.: Astron. Nachr. 326, 409 (2005)

    Article  ADS  Google Scholar 

  • Seilmayer, M., Galindo, V., Gerbeth, G., Gundrum, T., Stefani, F., Gellert, M., Rüdiger, G., Schultz, M., Hollerbach, R.: Experimental evidence for nonaxisymmetric magnetorotational instability in a rotating liquid metal exposed to an azimuthal magnetic field. Phys. Rev. Lett. 113, 024505 (2014)

    Article  ADS  Google Scholar 

  • Sisan, D.R., Mujica, N., Tillotson, W.A., Huang, Y.M., Dorland, W., Hassan, A.B., Antonsen, T.M., Lathrop, D.P.: Phys. Rev. Lett. 93, 114502 (2004)

    Article  ADS  Google Scholar 

  • Stefani, F., Gundrum, T., Gerbeth, G.: Phys. Rev. Lett. 97, 184502 (2006)

    Article  ADS  Google Scholar 

  • Stefani, F., Gundrum, T., Gerbeth, G., Rüdiger, G., Szklarski, J., Hollerbach, R.: New J. Phys. 9, 295 (2007)

    Article  ADS  Google Scholar 

  • Tsytovich, V.N., Morfill, G.E., Vladimirov, S.V., Thomas, H.M.: In: Elementary Physics of Complex Plasmas. Lect. Notes Phys., vol. 731 (2008)

    Chapter  Google Scholar 

  • Wang, Z., Si, J., Liu, W., Li, H.: Phys. Plasmas 15, 102109 (2008)

    Article  ADS  Google Scholar 

  • Zhou, A.-H.: Astrophys. Space Sci. 343, 237 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hajisharifi.

Appendix

Appendix

Dispersion relation of the magnetized rotational viscous dusty plasma system has been reported as

$$\begin{aligned}& \bigl(\eta k^{2} - i \omega\bigr)^{2} \frac{k^{2}}{k_{z}^{2}} \biggl\{ i k^{2} v_{{Ai}}^{2} \biggl[\eta k^{2} - i \omega \\ & \qquad {} + \frac{k_{z}^{2}}{ k^{2}} \biggl( \frac{\kappa^{2}}{2\varOmega} + \varOmega_{i} \biggr) \frac{ i }{ \omega} \frac{{d}\varOmega}{{dlnr}} \biggr] \\ & \qquad {} +\biggl( \omega \varOmega_{i}^{2} +\omega \varOmega_{e}^{2} \frac{v_{{Ai}}^{2}}{v_{{Ae}}^{2}} + \frac{ i k_{z}^{2} v_{{Ai}}^{2}}{(\eta k^{2} - i \omega)}\biggr)\\ & \quad \quad {}\times (2\varOmega- \varOmega_{e} ) \biggl( \frac{\kappa^{2}}{2\varOmega} + \varOmega_{i} \biggr)+A\biggl[\bigl(\eta k^{2} - i \omega\bigr) \\ & \quad \quad {}\times \biggl(\eta k^{2}- i \omega- \frac{k_{z}^{2}}{k^{2}} i \varOmega_{d} d\biggr) \biggl( \frac{k^{2}}{k_{z}^{2}} \biggr)+( \varOmega_{e} - \varOmega_{d} )\\ & \quad \quad {}\times \biggl( \frac{\kappa^{2}}{ 2\varOmega} + \varOmega_{i} \biggr) +(2\varOmega- \varOmega_{e} ) \biggl( \frac{\kappa^{2}}{ 2\varOmega} - \varOmega_{d} \biggr)\biggr]\biggr\} \\ & \quad \quad {}\times \biggl\{ i k_{z}^{2} v_{{Ai}}^{2} \biggl[ \frac{- i }{\omega} \frac{{d}\varOmega}{ {dlnr}} \frac{( \frac{\kappa^{2}}{2\varOmega} - \varOmega_{e} )}{(\eta k^{2} - i \omega)} \biggl(\eta k^{2} - i \omega\\ & \quad \quad {}- \frac{k_{z}^{2}}{ k^{2}} i \varOmega_{i} d\biggr)+ \frac{k^{2}}{k_{z}^{2} (\eta k^{2} - i \omega)} \biggl(\eta k^{2} - i \omega- \frac{k_{z}^{2}}{ k^{2}} i \varOmega_{e} d\biggr)\\ & \quad \quad {}\times \biggl(\eta k^{2} - i \omega- \frac{k_{z}^{2}}{k^{2}} i \varOmega_{i} d\biggr)\biggr]- \frac{(2\varOmega+ \varOmega_{i} ) i k^{2} v_{{Ai}}^{2}}{(\eta k^{2} - i \omega)}\\ & \quad \quad {}\times \biggl( \frac{\kappa^{2}}{2\varOmega} - \varOmega_{e} \biggr)+\biggl[ \frac{v_{{Ai}}^{2} (\omega \varOmega_{e}^{2} )}{v_{{Ae}}^{2} (\eta k^{2} - i \omega)} \biggl(\eta k^{2} - i \omega\\ & \quad \quad {} - \frac{k_{z}^{2}}{k^{2}} i \varOmega_{i} d\biggr)+ \frac{(\omega \varOmega_{i}^{2} )}{(\eta k^{2} - i \omega)} \biggl(\eta k^{2} - i \omega- \frac{k_{z}^{2}}{k^{2}} i \varOmega_{e} d\biggr)\biggr]\\ & \quad \quad {}+A\biggl[ \frac{(2\varOmega- \varOmega_{d} )}{(\eta k^{2} - i \omega)} \biggl( \frac{\kappa^{2}}{2\varOmega} - \varOmega_{e} \biggr) \biggl(\eta k^{2} - i \omega- \frac{k_{z}^{2}}{k^{2}} i \varOmega_{i} d\biggr)\\ & \quad \quad {}+\biggl( \frac{k^{2}}{ k_{z}^{2}} \biggr) \biggl(\eta k^{2} - i \omega- \frac{k_{z}^{2}}{k^{2}} i \varOmega_{e} d\biggr) \biggl(\eta k^{2} - i \omega\\ & \quad \quad {}- \frac{k_{z}^{2}}{ k^{2}} i \varOmega_{i} d\biggr)-(2 \varOmega+ \varOmega_{i} )\biggl[ \frac{(\eta k^{2} - i \omega- \frac{k_{z}^{2}}{k^{2}} i \varOmega_{d} d)}{ (\eta k^{2} - i \omega)} \\ & \quad \quad {}\times \biggl( \frac{\kappa^{2}}{2\varOmega} - \varOmega_{e} \biggr)- \frac{(\eta k^{2} - i \omega- \frac{k_{z}^{2}}{k^{2}} i \varOmega_{e} d)}{(\eta k^{2} - i \omega)} \\ & \quad \quad {}\times\biggl( \frac{\kappa^{2}}{2\varOmega} - \varOmega_{d} \biggr)\biggr]\biggr]\biggr\} \\ & \quad = \biggl\{ \biggl( \frac{\kappa^{2}}{2\varOmega} - \varOmega_{e} \biggr) \bigl( \bigl( \eta k^{2} - i \omega \bigr) i k^{2} v_{{Ai}}^{2} +\omega \varOmega_{i}^{2} \bigr)\\ & \quad \quad {} + \biggl( \frac{\kappa^{2}}{2\varOmega} + \varOmega_{i} \biggr) \biggl[ i k_{z}^{2} v_{{Ai}}^{2} \biggl( \eta k^{2} - i \omega- \frac{k_{z}^{2}}{k^{2}} i \varOmega_{e} d \biggr) \frac{k^{2}}{ k_{z}^{2}} \\ & \quad \quad {}+ \frac{k_{z}^{2} v_{{Ai}}^{2}}{\omega} \frac{{d}\varOmega}{{dlnr}} \biggl( \frac{\kappa^{2}}{2\varOmega} - \varOmega_{e} \biggr) + \omega \varOmega_{e}^{2} \frac{v_{{Ai}}^{2}}{ v_{{Ae}}^{2}} \biggr]\\ & \quad \quad {} +A \biggl[ ( 2\varOmega- \varOmega_{d} ) \biggl( \frac{\kappa^{2}}{2\varOmega} - \varOmega_{e} \biggr) \biggl( \frac{\kappa^{2}}{2\varOmega} + \varOmega_{i} \biggr) + \biggl( \frac{k^{2}}{ k_{z}^{2}} \biggr) \\ & \quad \quad {}\times\bigl( \eta k^{2} - i \omega \bigr) \biggl[ \varOmega_{d} \biggl( \eta k^{2} - i \omega- \frac{k_{z}^{2}}{k^{2}} i \varOmega_{e} d \biggr)\\ & \quad \quad {} - \varOmega_{e} \biggl( \eta k^{2} - i \omega- \frac{k_{z}^{2}}{k^{2}} i \varOmega_{d} d \biggr) + \biggl( \frac{\kappa^{2}}{2\varOmega} + \varOmega_{i} \biggr)\\ & \quad \quad {}\times \biggl( \eta k^{2} - i \omega- \frac{k_{z}^{2}}{k^{2}} i \varOmega_{e} d \biggr) \biggr] \biggr] \biggr\} \biggl\{ i k_{z}^{2} v_{{Ai}}^{2} \bigl( \eta k^{2} - i \omega \bigr)\\ & \quad \quad {}\times \biggl( \frac{k^{2}}{k_{z}^{2}} \biggr) \biggl( \frac{- i }{\omega} \frac{{d}\varOmega}{{dlnr}} \biggl( \eta k^{2} - i \omega- \frac{k_{z}^{2}}{k^{2}} i \varOmega_{i} d \biggr) \\ & \quad \quad {}- ( 2\varOmega- \varOmega_{e} ) \biggr) -\omega \varOmega_{i}^{2} ( 2 \varOmega- \varOmega_{e} ) - ( 2\varOmega+ \varOmega_{i} ) \\ & \quad \quad {}\times\biggl( i k^{2} v_{{Ai}}^{2} \bigl( \eta k^{2} - i \omega \bigr) +\omega \varOmega_{e}^{2} \frac{v_{{Ai}}^{2}}{v_{{Ae}}^{2}} \biggr) \\ & \quad \quad {}-A \biggl[ \frac{\varOmega_{e}}{\varOmega_{d}} ( 2\varOmega+ \varOmega_{i} ) ( 2 \varOmega- \varOmega_{e} ) \biggl( \frac{\kappa^{2}}{2\varOmega} - \varOmega_{d} \biggr)\\ & \quad \quad {} + \biggl( \frac{k^{2}}{k_{z}^{2}} \biggr) \bigl( \eta k^{2} - i \omega \bigr) \biggl( ( \varOmega_{d} - \varOmega_{e} ) \biggl( \eta k^{2} - i \omega\\ & \quad \quad {}- \frac{k_{z}^{2}}{k^{2}} i \varOmega_{i} d \biggr) + \frac{\varOmega_{e}}{\varOmega_{d}} ( 2\varOmega+ \varOmega_{i} ) \biggl( \eta k^{2} - i \omega\\ & \quad \quad {}- \frac{k_{z}^{2}}{ k^{2}} i \varOmega_{d} d \biggr) \biggr) \biggr] \biggr\} \end{aligned}$$

where \(A\) is defined by

$$\begin{aligned}& \frac{v_{{Ai}}^{2}}{v_{{Ad}}^{2}} \biggl( \frac{\omega \varOmega_{d}^{2}}{ ( 2\varOmega {-} \varOmega_{d} ) ( \frac{\kappa^{2}}{2\varOmega} {-} \varOmega_{d} ) + \frac{k^{2}}{k_{z}^{2}} ( \eta k^{2} {-} i \omega ) ( \eta k^{2} {-} i \omega {-} \frac{k_{z}^{2}}{k^{2}} i \varOmega_{d} {d} )} \biggr). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MahdaviGharavi, M., Hajisharifi, K. & Mehidan, H. Local study of helical magnetorotational instability in viscous Keplerian disks. Astrophys Space Sci 363, 41 (2018). https://doi.org/10.1007/s10509-018-3259-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-018-3259-4

Keywords

Navigation