Skip to main content
Log in

Structure scalars and cylindrical systems in Brans-Dicke gravity

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

This paper explores structure scalars of cylindrically symmetric spacetime in Brans-Dicke gravity. We construct twelve scalar factors using orthogonal splitting of the Reimann tensor and study their distinct dynamical interpretations. These structure scalars are used to derive a set of governing equations of the evolving system. It is concluded that cylindrical systems are necessarily inhomogeneous. Finally, we show that all possible static inhomogeneous cylindrical solutions can be obtained through structure scalars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sharif.

Appendix

Appendix

The non-zero components of BD equations are

$$\begin{aligned}& G^{0}_{0} =\frac{1}{\phi} \bigl(T^{0(m)}_{0}+T^{0(\phi)}_{0}\bigr)= \rho^{(\mathit{eff})} \\& \phantom{G^{0}_{0}}=\frac{1}{\phi} \biggl({\rho}+ \phi^{,t}_{;t}+ \Box\phi+\frac{\omega_{BD}}{\phi} \biggl[\phi^{,t}\phi_{;t} +\frac{1}{2}\phi_{,\alpha} \phi^{,\alpha} \biggr] \biggr) \\& \phantom{G^{0}_{0}=}{} +\frac{V(\phi)}{2\phi}, \end{aligned}$$
(58)
$$\begin{aligned}& G^{0}_{1}=\frac{1}{\phi} \bigl(T^{0(m)}_{1}+T^{0(\phi)}_{1}\bigr) = \frac{\omega_{BD}}{\phi^{2}}\bigl(\phi^{,t}\phi_{,r}\bigr) + \frac{\phi^{,t}_{;r}}{\phi}, \end{aligned}$$
(59)
$$\begin{aligned}& G^{1}_{1}=\frac{1}{\phi} \bigl(T^{1(m)}_{1}+T^{1(\phi)}_{1} \bigr)=p^{(\mathit{eff})}_{r} \\& \phantom{G^{1}_{1}} = \frac{1}{\phi} \biggl(p_{r}+ \phi^{,r}_{;r}-\square\phi +\frac{\omega_{BD}}{\phi} \biggl[ \phi^{,r}\phi_{,r} -\frac{1}{2}\phi^{,\alpha} \phi_{,\alpha} \biggr] \biggr) \\& \phantom{G^{1}_{1}=}{} -\frac{V(\phi)}{2\phi}, \end{aligned}$$
(60)
$$\begin{aligned}& G^{2}_{2}=\frac{1}{\phi} \bigl(T^{2(m)}_{2}+T^{2(\phi)}_{2} \bigr)=p^{(\mathit{eff})}_{z} \\& \phantom{G^{2}_{2}} =\frac{1}{\phi} \biggl(p_{z}- \square\phi -\frac{\omega_{BD}}{2\phi}\phi^{,\alpha}\phi_{,\alpha} - \frac{V(\phi)}{2\phi}\biggr) , \end{aligned}$$
(61)
$$\begin{aligned}& G^{3}_{3}=\frac{1}{\phi} \bigl(T^{3(m)}_{3}+T^{3(\phi)}_{3} \bigr) =p^{(\mathit{eff})}_{\phi} \\& \phantom{G^{3}_{3}}=\frac{1}{\phi} \biggl(p_{\perp}-\square \phi -\frac{\omega_{BD}}{2\phi}\phi^{,\alpha}\phi_{,\alpha} -\frac{V(\phi)}{2\phi} \biggr) , \end{aligned}$$
(62)

and the wave equation is

$$\begin{aligned} \square\phi =&\frac{1}{3+2\omega_{BD}} \biggl[-\rho^{m}+p^{m}_{r} +p^{m}_{\perp}+p^{m}_{z} \\ &{}+\phi \frac{dV(\phi)}{d\phi}-2V(\phi) \biggr]. \end{aligned}$$
(63)

The non-zero components of the Weyl tensor in Eqs. (8) and (9) are

$$\begin{aligned}& C_{0101} = \frac{-A^{2}}{6} \biggl[\frac{2\ddot{A}}{A}- \frac{2\ddot{B}}{B} -\frac{2\ddot{C}}{C}-2\biggl(\frac{\dot{A}}{A} \biggr)^{2}\\& \phantom{C_{0101} =} {}+\frac{\dot{B}\dot{C}}{BC} -2\frac{A''}{A}-2\frac{B'C'}{BC} \biggr] \\& \phantom{C_{0101}} = -\biggl(\frac{A^{2}}{BC}\biggr)^{2}C_{2323}, \\& C_{0202} = \frac{-B^{2}}{6} \biggl[\frac{2\ddot{A}}{A}- \frac{2\ddot{B}}{B} -\frac{2\ddot{C}}{C}-2\biggl(\frac{\dot{A}}{A} \biggr)^{2}\\& \phantom{C_{0202} =}{}+3\frac{\dot{A}}{A}\biggl(\frac {\dot{B}}{B} - \frac{\dot{C}}{C}\biggr) +\frac{\dot{B}\dot{C}}{BC} -\frac{A''}{A} - \frac{B''}{B}\\& \phantom{C_{0202} =}{} +\frac{2C''}{C}+\biggl( \frac{A'}{A}\biggr)^{2}+3\frac{\dot{A}}{A}\biggl( \frac{\dot{B}}{B} -\frac{\dot{C}}{C}\biggr)-\frac{B'C'}{BC} \biggr] \\& \phantom{C_{0202} }=-\biggl( \frac{B}{C}\biggr)^{2}C_{1313}, \\& C_{0212} = -\frac{B^{2}}{2} \biggl[\frac{\dot{B}'}{B} - \frac{\dot{C}'}{C}-\frac{\dot{A}}{A}\biggl(\frac{B'}{B}-\frac{C'}{C} \biggr)\\& \phantom{C_{0212} =}{} -\biggl(\frac{\dot{B}}{B}-\frac{\dot{C}}{C}\biggr)\frac{A'}{A} \biggr] =-\biggl(\frac{B}{C}\biggr)^{2}C_{0313}, \\& C_{0303} = \frac{C^{2}}{6} \biggl[\frac{\ddot{A}}{A} + \frac{\ddot{B}}{B}-\frac{2\ddot{C}}{C} -3\frac{\dot{A}}{A}\biggl( \frac{\dot{B}}{B}-\frac{\dot{C}}{C}\biggr) \\& \phantom{C_{0303} = }{}+\frac{\dot{B}\dot{C}}{BC}- \frac{A''}{A}+2\frac{B''}{B} - \frac{C''}{C}+\biggl(\frac{A'}{A} \biggr)^{2}\\& \phantom{C_{0303} = }{}-3\frac{A'}{A}\biggl(\frac {B'}{B}- \frac{C'}{C}\biggr) +\frac{B'C'}{BC} \biggr]=-\biggl(\frac{C}{B} \biggr)^{2}C_{1212}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharif, M., Manzoor, R. Structure scalars and cylindrical systems in Brans-Dicke gravity. Astrophys Space Sci 359, 17 (2015). https://doi.org/10.1007/s10509-015-2440-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-015-2440-2

Keywords

Navigation