Skip to main content
Log in

On generalized Einstein-Rosen waves in Brans-Dicke theory

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper cylindrically symmetric vacuum solutions corresponding to generalized Einstein-Rosen-type gravitational waves are considered in the framework of Brans-Dicke (BD) scalar-tensor theory. We see that, similar to axially symmetric vacuum solutions, under some assumptions, it is possible to generate BD-vacuum solutions from corresponding solutions in general relativity. Using this generating technique, we present several exact solutions corresponding to soliton, standing or pulse waves in BD theory. We also present a Kasner-type time-dependent generalization of cylindrically symmetric static vacuum solution. Some physical implications of these solutions are discussed in some detail. The effect of pulse type waves on test particle motion is briefly discussed and compared with static vacuum background. We also see that, similar to general relativity, there are no trapped cylinders in Einstein-Rosen-type solutions in BD theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Einstein, in Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin (1918) p. 154

  2. A. Einstein, N. Rosen, J. Franklin Inst. 223, 43 (1937)

    Article  ADS  Google Scholar 

  3. G. Beck, Z. Phys. A 33, 713 (1925)

    Article  MATH  Google Scholar 

  4. L. Marder, Proc. R. Soc. London. A 244, 524 (1958)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. T. Levi-Civita, Rend. Acc. Lincei 28, 101 (1919)

    MATH  Google Scholar 

  6. K.S. Thorne, Phys. Rev. 138, B251 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  7. S. Chandrasekhar, V. Ferrari, Proc. R. Soc. London A 412, 75 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  8. J. Stachel, J. Math. Phys. 7, 1321 (1966)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. A. Ashtekar et al., Phys. Rev. D 55, 669 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  10. T. Piran, Phys. Rev. Lett. 41, 1085 (1978)

    Article  ADS  Google Scholar 

  11. F. Echeverria, Phys. Rev. D 47, 2271 (1993)

    Article  ADS  Google Scholar 

  12. B.K. Berger, Ann. Phys. (N. Y.) 83, 458 (1974)

    Article  ADS  Google Scholar 

  13. K. Kucher, Phys. Rev. D 4, 955 (1971)

    Article  ADS  Google Scholar 

  14. A. Ashtekar, M. Pierri, J. Math. Phys. 37, 6250 (1996)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. D. Korotkin, H. Samtleben, Phys. Rev. Lett. 80, 14 (1998)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. J. Garriga, E. Vardaguer, Phys. Rev. D 36, 2250 (1987)

    Article  ADS  Google Scholar 

  17. C. Brans, R.H. Dicke, Phys. Rev. 124, 925 (1961)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. F. Dahia, C. Romero, Phys. Rev. D 60, 104019 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  19. A. Arazi, C. Simeone, Gen. Relativ. Gravit. 32, 2259 (2000)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. A. Baykal, O. Delice, Gen. Relativ. Gravit. 41, 267 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. A. Baykal, O. Delice, D.K. Ciftci, J. Math. Phys. 51, 072505 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  22. J.R. Rao, R.N. Tiwari, K.S. Bhamra, Ann. Phys. 87, 470 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  23. J.R. Rao, R.N. Tiwari, K.S. Bhamra, Ann. Phys. 87, 480 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  24. J.R. Rao, R.N. Tiwari, K.S. Bhamra, Ann. Phys. 90, 573 (1975)

    Article  ADS  Google Scholar 

  25. J.R. Rao, R.N. Tiwari, K.S. Bhamra, Indian J. Pure Appl. Math. 9, 426 (1978)

    MathSciNet  Google Scholar 

  26. M.H. Dehghani, M. Shojania, Can. J. Phys. 80, 951 (2002)

    Article  ADS  Google Scholar 

  27. P. Jordan, J. Ehlers, W. Kundt, Abh. Akad. Wiss. Mainz. Math. Nat. Kl. 2, 21 (1960)

    MathSciNet  Google Scholar 

  28. A.S. Kompaneets, Zh. Eksp. Teor. Fiz. 34, 953 (1958)

    MathSciNet  Google Scholar 

  29. A.S. Kompaneets, Sov. Phys. JETP 7, 659 (1958)

    MathSciNet  MATH  Google Scholar 

  30. H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Hertl, Exact Solutions of Einstein’s Field Equations, 2nd edition (Cambrigde University Press, Cambridge, 2003)

  31. R.A. Harris, J.D. Zund, Tensor 30, 255 (1976)

    MathSciNet  MATH  Google Scholar 

  32. O. Delice, Acta Phys. Pol. B 37, 2245 (2006)

    MathSciNet  Google Scholar 

  33. B.K. Nayak, R.N. Tiwari, J. Math. Phys. 18, 289 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  34. T. Singh, L.N. Rai, Gen. Relativ. Gravit. 11, 37 (1979)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. M. Halilsoy, Nuovo Cimento B 102, 563 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  36. V.A. Belinskii, E.E. Zakharov, Sov. Phys. JETP. 49, 985 (1979)

    Google Scholar 

  37. D. Kramer, Class. Quantum Grav. 16, L75 (1999)

    Article  MATH  ADS  Google Scholar 

  38. H. Stephani, Gen. Relativ. Gravit. 35, 467 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  39. M. Carmeli, Classical Fields: General Relativity and Gauge Theory (John Wiley & Sons, New York, 1982)

  40. L. Herrera, N.O. Santos, Class. Quantum Grav. 22, 2407 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  41. L. Herrera, A. Di Prisco, J. Carot, N.O. Santos, Int. J. Theor. Phys. 47, 380 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. E. Kasner, Am. J. Math. 43, 217 (1925)

    Article  MathSciNet  Google Scholar 

  43. R.A. Hulse, J.H. Taylor, Astrophys. J. Lett. 195, L51 (1975)

    Article  ADS  Google Scholar 

  44. C.M. Will, Living Rev. Rel. 17, 7 (2014)

    Google Scholar 

  45. C.M. Will, Phys. Rev. D 50, 6058 (1994)

    Article  ADS  Google Scholar 

  46. B. Bertotti, L. Iess, P. Tortora, Nature 425, 374 (2003)

    Article  ADS  Google Scholar 

  47. A. Arazi, C. Simeone, Eur. Phys. J. Plus 126, 11 (2011)

    Article  Google Scholar 

  48. R. Gautreau, R.B. Hoffman, Nuovo Cimento B 61, 411 (1969)

    Article  MathSciNet  ADS  Google Scholar 

  49. A.Z. Wang, M.F.A. da Silva, N.O. Santos, Class. Quantum Grav. 14, 2417 (1997)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  50. M. Arık, O. Delice, Int. J. Mod. Phys. D 12, 1095 (2003)

    Article  ADS  Google Scholar 

  51. S.A. Hayward, Class. Quantum Grav. 17, 1749 (2000)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  52. S.M.C.V. Gonçalves, Class. Quantum Grav. 20, 37 (2003)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özgür Delice.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akyar, L., Delice, Ö. On generalized Einstein-Rosen waves in Brans-Dicke theory. Eur. Phys. J. Plus 129, 226 (2014). https://doi.org/10.1140/epjp/i2014-14226-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14226-8

Keywords

Navigation