Skip to main content
Log in

Complexity factor for cylindrical system in Brans–Dicke gravity

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we explore the physical aspects that create complexity within a static anisotropic cylindrical source in the framework of self-interacting Brans–Dicke theory. We split the Riemann tensor to formulate structure scalars associated with fundamental properties of the fluid in the presence of the scalar field. We define the complexity factor based on these scalars and then discuss the criteria for zero complexity. Finally, we use the condition of vanishing complexity as a constraint to check the behavior for two compact objects. It is deduced that the inclusion of the scalar field increases the complexity of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E Diaz, A Zandivarez, M Merchan and H Muriel Astrophys. J. 629 158 (2005)

    ADS  Google Scholar 

  2. A N Kolmogorov Prob. Inform. Theory J. 1 3 (1965)

    Google Scholar 

  3. J Grassberger Int. J. Theor. Phys. 125 907 (1986)

    Google Scholar 

  4. P W Anderson Phys. Today 7 9 (1991)

    Google Scholar 

  5. G Parisi Phys. World 6 42 (1993)

    Google Scholar 

  6. R Lopez-Ruiz, H L Mancini and X Calbet Phys. Lett. A209 321 (1995)

    ADS  Google Scholar 

  7. X Calbet and R Lopez-Ruiz Phys. Rev. E63 066116 (2001)

    ADS  Google Scholar 

  8. R G Catalan, J Garay and R Lopez-Ruiz Phys. Rev. E66 011102 (2002)

    ADS  Google Scholar 

  9. J Sañudo and R Lopez-Ruiz Phys. Lett. A372 5283 (2008)

    ADS  Google Scholar 

  10. J Sañudo and A F Pacheco Phys. Lett. A373 807 (2009)

    ADS  Google Scholar 

  11. K Ch Chatzisavvas, V P Psonis, C P Panos and Ch C Moustakidis Phys. Lett. A373 3901 (2009)

    ADS  Google Scholar 

  12. R A de Souza, M G B de Avellar and J E Horvath arXiv:1308.3519

  13. M G B de Avellar, R A de Souza, J E Horvath and D M Paret Phys. Lett. A378 3481 (2014)

    ADS  Google Scholar 

  14. L Herrera Phys. Rev. D97 044010 (2018)

    ADS  MathSciNet  Google Scholar 

  15. L Herrera, A Di Prisco, and J Ospino Phys. Rev. D98 104059 (2018)

    ADS  Google Scholar 

  16. M Sharif and I I Butt Eur. Phys. J. C78 688 (2018)

    ADS  Google Scholar 

  17. L Herrera, A Di Prisco and J Ospino Phys. Rev. D99 044049 (2019)

    ADS  Google Scholar 

  18. A Einstein and N Rosen J. Franklin Inst. 223 43 (1937)

    ADS  MathSciNet  Google Scholar 

  19. L Herrera, G Le Denmat, G Marcilhacy and N O Santos Int. J. Mod. Phys. D14 657 (2005)

    ADS  Google Scholar 

  20. L Herrera and N O Santos Class. Quantum Grav. 22 2407 (2005)

    ADS  Google Scholar 

  21. M Sharif and G Abbas Astrophys. Space. Sci. 335 515 (2011)

    ADS  Google Scholar 

  22. M Sharif and I I Butt Eur. Phys. J. C78 850 (2018)

    ADS  Google Scholar 

  23. S Perlmutter, G Aldering, M D Valle, S Deustua, R S Ellis, S Fabbro, A Fruchter, G Goldhaber, A Goobar, D E Groom, I M Hook, A G Kim, M Y Kim, R A Knop, C Lidman, R G McMahon, P Nugent, R Pain, N Panagia, C R Pennypacker, P Ruiz-Lapuente, B Schaefer and N Walton Nature 391 51 (1998)

    ADS  Google Scholar 

  24. A G Riess, A V Filippenko, P Challis, A Clocchiattia, A Diercks, P M Garnavich, R L Gilliland, C J Hogan, S Jha, R P Kirshner, B Leibundgut, M M Phillips, D Reiss, B P Schmidt, R A Schommer, R C Smith, J Spyromilio, C Stubbs, N B Suntzeff and J Tonry Astron. J. 116 1009 (1998)

    ADS  Google Scholar 

  25. C L Bennett, M Halpern, G Hinshaw, N Jarosik, A Kogut, M Limon, S S Meyer, L Page, D N Sperge, G S Tucker, E Wollack, E L Wright, C Barnes, M R Greason, R S Hill, E Komatsu, M R Nolta, N Odegard, H V Peiris, L Verde, and J L Weiland Astrophys. J. Suppl. 148 1 (2003)

    ADS  Google Scholar 

  26. C Brans and R H Dicke Phys. Rev. 124 925 (1961)

    ADS  MathSciNet  Google Scholar 

  27. E J Weinberg Phys. Rev. D40 3950 (1989)

    ADS  Google Scholar 

  28. C M Will Living Rev. Rel. 4 4 (2001)

    Google Scholar 

  29. J Khoury and A Weltman Phys. Rev. D69 044026 (2004)

    ADS  MathSciNet  Google Scholar 

  30. M Sharif and R Manzoor Gen. Relativ. Gravit. 47 98 (2015)

    ADS  Google Scholar 

  31. M Sharif and R Manzoor Phys. Rev. D91 024018 (2015)

    ADS  MathSciNet  Google Scholar 

  32. M Sharif and R Manzoor Astrophys. Space Sci. 359 17 (2015)

    ADS  Google Scholar 

  33. M Sharif and R Manzoor Commun. Theor. Phys. 68 39 (2017)

    ADS  Google Scholar 

  34. G Abbas and H Nazar Eur. Phys. J. C78 510 (2018)

    ADS  Google Scholar 

  35. G Abbas and H Nazar Eur. Phys. J. C78 957 (2018)

    ADS  Google Scholar 

  36. Y Fujii and K Maeda The Scalar-Tensor Theory of Gravitation (Cambridge : Cambridge University Press) (2003).

    MATH  Google Scholar 

  37. C S Trendafilova and S A Fulling Eur. J. Phys. 32 1663 (2011)

    Google Scholar 

  38. G Abbas, S Nazeer and M A Meraj Astrophys. Space Sci. 354 449 (2014)

    ADS  Google Scholar 

  39. L Herrera, A Di Prisco and J Ospino Gen. Relativ. Gravit. 44 2645 (2012)

    ADS  Google Scholar 

  40. K S Thorne Phys. Rev. 138 B251 (1965)

    ADS  Google Scholar 

  41. K S Thorne Phys. Rev. 139 B244 (1965)

    ADS  Google Scholar 

  42. H Chao-Guang Acta Phys. Sin. 4 617 (1995)

    ADS  Google Scholar 

  43. R Penrose General Relativity, An Einstein Centenary Survey (eds.) S W Hawking and W Israel (Cambridge : Cambridge University Press) (1979)

  44. R Tolman Phys. Rev. 35 875 (1930)

    ADS  Google Scholar 

  45. L Herrera, A Di Prisco, J L Hernández-Pastora and N O Santos Phys. Lett. A237 113 (1998)

    ADS  Google Scholar 

  46. L Bel Ann. Inst. H Poincaré 17 37 (1961)

    MathSciNet  Google Scholar 

  47. L Herrera, J Ospino, A Di Prisco, E Fuenmayor and O Troconis Phys. Rev. D79 064025 (2009)

    ADS  Google Scholar 

  48. M K Gokhroo and A L Mehra Gen. Relativ. Gravit. 26 75 (1994)

    ADS  Google Scholar 

  49. S L Shapiro and S A Teukolsky Black Holes, White Dwarfs and Neutron Stars (New Jersey : John Wiley and Sons) (1983)

    Google Scholar 

  50. R Kippenhahn, A Weigert and A Weiss Stellar Structure and Evolution (New York : Springer) p 151 (1990)

    MATH  Google Scholar 

  51. L Herrera and W Barreto Phys. Rev. D88 084022 (2013)

    ADS  Google Scholar 

  52. L Herrera, E Fuemayor and P Leon Phys. Rev. D93 024047 (2016)

    ADS  Google Scholar 

  53. K Atazadeh, A Khaleghi, H R Sepangi and Y Tavakoli Int. J. Mod. Phys. D18 1101 (2009)

    ADS  Google Scholar 

  54. Y Nutku Astrophys. J. 155 999 (1969)

    ADS  MathSciNet  Google Scholar 

  55. H Huang, P Wu and H Yu Phys. Rev. D89 103521 (2014)

    ADS  Google Scholar 

  56. L Herrera, A Di Prisco, and J Ibanez Phys. Rev. D84 107501 (2011)

    ADS  Google Scholar 

  57. C Santos and R Gregory Annals Phys. 258 111 (1997)

    ADS  Google Scholar 

  58. M Sharif and R Manzoor J. Exp. Theor. Phys. 122 849 (2016)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sharif.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharif, M., Majid, A. Complexity factor for cylindrical system in Brans–Dicke gravity. Indian J Phys 95, 769–777 (2021). https://doi.org/10.1007/s12648-020-01729-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01729-z

Keywords

PACS Nos.

Navigation