Skip to main content
Log in

Molecular mechanisms of apoptosis and autophagy elicited by combined treatment with oridonin and cetuximab in laryngeal squamous cell carcinoma

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Combined oridonin (ORI), a natural and safe kaurene diterpenoid isolated from Rabdosia rubescens, and cetuximab (Cet), an anti-EGFR monoclonal antibody, have been reported to exert synergistic anti-tumor effects against laryngeal squamous cell carcinoma (LSCC) both in vitro and in vivo by our group. In the present study, we further found that ORI/Cet treatment not only resulted in apoptosis but also induced autophagy. AMPK/mTOR signaling pathway was found to be involved in the activation of autophagy in ORI/Cet-treated LSCC cells, which is independent of p53 status. Additionally, chromatin immunoprecipitation (ChIP) assay showed that ORI/Cet significantly increased the binding NF-κB family member p65 with the promotor of BECN 1, and p65-mediated up-regulation of BECN 1 caused by ORI/Cet is coupled to increased autophagy. On the other hand, we demonstrated that either Beclin 1 SiRNA or autophagy inhibitors could increase ORI/Cet induced-apoptosis, indicating that autophagy induced by combination of the two agents plays a cytoprotective role. Interestingly, 48 h after the combined treatment, autophagy began to decrease but apoptosis was significantly elevated. Our findings suggest that autophagy might be strongly associated with the antitumor efficacy of ORI/Cet, which may be beneficial to the clinical application of ORI/Cet in LSCC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Codogno P, Meijer AJ (2005) Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ 12:1509–1518

    Article  CAS  PubMed  Google Scholar 

  2. Chen N, Karantza V (2011) Autophagy as a therapeutic target in cancer. Cancer Biol Ther 11:157–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zeng X, Kinsella TJ (2011) Impact of autophagy on chemotherapy and radiotherapy mediated tumor cytotoxicity: “To Live or not to Live”. Front Oncol 1:30

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang H, Tang J, Li C, Kong J et al (2015) MiR-22 regulates 5-FU sensitivity by inhibiting autophagy and promoting apoptosis in colorectal cancer cells. Cancer Lett 356:781–790

    Article  CAS  PubMed  Google Scholar 

  5. Gong C, Song E, Codogno P et al (2012) The roles of BECN1 and autophagy in cancer are context dependent. Autophagy 8:1853–1855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shinojima N, Yokoyama T, Kondo Y et al (2007) Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy. Autophagy 3:635–637

    Article  CAS  PubMed  Google Scholar 

  7. Wu Y, Ni Z, Yan X et al (2016) Targeting the MIR34C-5p-ATG4B- autophagy axis enhances the sensitivity of cervical cancer cells to pirarubicin. Autophagy 12:1105–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kozyreva VK, Kiseleva A, Ice RJ et al (2016) Combination of eribulin and aurora A inhibitor MLN8237 prevents metastatic colonization and induces cytotoxic autophagy in breast cancer. Mol Cancer Ther 15:1809–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang ZJ, Chee CE, Huang S et al (2011) The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther 10:1533–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kumar D, Shankar S, Srivastava RK (2014) Rottlerin induces autophagy and apoptosis in prostate cancer stem cells via PI3K/Akt/mTOR signaling pathway. Cancer Lett 343:179–189

    Article  CAS  PubMed  Google Scholar 

  11. Green AS, Chapuis N, Lacombe C et al (2011) LKB1/AMPK/mTOR signaling pathway in hematological malignancies: from metabolism to cancer cell biology. Cell Cycle 10:2115–2120

    Article  CAS  PubMed  Google Scholar 

  12. Arsikin K, Kravic-Stevovic T, Jovanovic M et al (2012) Autophagy-dependent and -independent involvement of AMP-activated protein kinase in 6-hydroxydopamine toxicity to SH-SY5Y neuroblastoma cells. Biochim Biophys Acta 1822:1826–1836

    Article  CAS  PubMed  Google Scholar 

  13. Jing K, Song KS, Shin S et al (2011) Docosahexaenoic acid induces autophagy through p53/AMPK/mTOR signaling and promotes apoptosis in human cancer cells harboring wild-type p53. Autophagy 7:1348–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Niso-santano M, Criollo A, Malik SA et al (2012) Direct molecular interactions between Beclin 1 and the canonical NFκB activation pathway. Autophagy 8:268–270

    Article  CAS  PubMed  Google Scholar 

  15. Harris J (2011) Autophagy and cytokines. Cytokine 56:140–144

    Article  CAS  PubMed  Google Scholar 

  16. Kiyono K, Suzuki HI, Matsuyama H et al (2009) Autophagy is activated by TGF-beta and potentiates TGF-beta-mediated growth inhibition in human hepatocellular carcinoma cells. Cancer Res 69:8844–8852

    Article  CAS  PubMed  Google Scholar 

  17. Jiang Q, Wang Y, Li T et al (2011) Heat shock protein 90-mediated inactivation of nuclear factor-kappaB switches autophagy to apoptosis through becn1 transcriptional inhibition in selenite-induced NB4 cells. Mol Biol Cell 22:1167–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ran W, Qian Z, Xin P et al (2016) Stellettin B induces G1 arrest, apoptosis and autophagy in human non-small cell lung cancer A549 cells via blocking PI3K/Akt/mTOR pathway. Sci Rep 6:27071

    Article  CAS  Google Scholar 

  19. D’Anneo A, Carlisi D, Lauricella M et al (2013) Parthenolide generates reactive oxygen species and autophagy in MDA-MB231 cells. A soluble parthenolide analogue inhibits tumour growth and metastasis in a xenograft model of breast cancer. Cell Death Dis 4:e891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li CY, Wang EQ, Cheng Y et al (2011) Oridonin: An active diterpenoid targeting cell cycle arrest, apoptotic and autophagic pathways for cancer therapeutics. Int J Biochem Cell Biol 43:701–704

    Article  CAS  PubMed  Google Scholar 

  21. Cui Q, Tashiro S, Onodera S et al (2007) Autophagy preceded apoptosis in oridonin-treated human breast cancer MCF-7 cells. Biol Pharm Bull 30:859–864

    Article  CAS  PubMed  Google Scholar 

  22. Kang N, Zhang JH, Qiu F et al (2010) Inhibition of EGFR signaling augments oridonin-induced apoptosis in human laryngeal cancer cells via enhancing oxidative stress coincident with activation of both the intrinsic and extrinsic apoptotic pathways. Cancer Lett 294:147–158

    Article  CAS  Google Scholar 

  23. Zhang Y, Wu Y, Tashiro S et al (2009) Involvement of PKC signal pathways in oridonin-induced autophagy in HeLa cells: a protective mechanism against apoptosis. Biochem Biophys Res Commun 378:273–278

    Article  CAS  PubMed  Google Scholar 

  24. Kang N, Cao SJ, Zhou Y et al (2015) Inhibition of caspase-9 by oridonin, a diterpenoid isolated from Rabdosia rubescens, augments apoptosis in human laryngeal cancer cells. Int J Oncol 47:2045–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cui Q, Tashiro S, Onodera S et al (2006) Augmentation of oridonin-induced apoptosis observed with reduced autophagy. J Pharmacol Sci 101:230–239

    Article  CAS  PubMed  Google Scholar 

  26. Ng K, Zhu AX (2008) Targeting the epidermal growth factor receptor in metastatic colorectal cancer. Crit Rev Oncol Hematol 65:8–20

    Article  PubMed  Google Scholar 

  27. Cao SJ, Xia MJ, Mao YW et al (2016) Combined oridonin with cetuximab treatment shows synergistic anticancer effects on laryngeal squamous cell carcinoma: involvement of inhibition of EGFR and activation of reactive oxygen species-mediated JNK pathway. Int J Oncol 49:2075–2087

    Article  CAS  PubMed  Google Scholar 

  28. Saik S, Sasazawa Y, Imamichi Y et al (2011) Caffeine induces apoptosis by enhancement of autophagy via PI3K/Akt/mTOR/p70S6K inhibition. Autophagy 7:176–187

    Article  CAS  Google Scholar 

  29. Lu F, Kishida S, Mu P et al (2015) NeuroD1 promotes neuroblastoma cell growth by inducing the expression of ALK. Cancer Sci 106:390–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rosenfeldt MT, Ryan KM (2011) The multiple roles of autophagy in cancer. Carcinogenesis 32:955–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang X, Hao MW, Dong K et al (2009) Apoptosis induction effects of EGCG in laryngeal squamous cell carcinoma cells through telomerase repression. Arch Pharm Res 32:1263–1269

    Article  CAS  PubMed  Google Scholar 

  32. Kuhar M, Imran S, Singh N (2007) Curcumin and quercetin combined with cisplatin to induce apoptosis in human laryngeal carcinoma Hep-2 cells through the mitochondrial pathway. J Cancer Mol 3:121–128

    CAS  Google Scholar 

  33. Kang N, Zhang JH, Qiu F et al (2010) Induction of G(2)/M phase arrest and apoptosis by oridonin in human laryngeal carcinoma cells. J Nat Prod 73:1058–1063

    Article  CAS  PubMed  Google Scholar 

  34. Li X, Li X, Wang J et al (2012) Oridonin up-regulates expression of P21 and induces autophagy and apoptosis in human prostate cancer cells. Int J Biol Sci 8:901–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zang L, Xu Q, Ye Y et al (2012) Autophagy enhanced phagocytosis of apoptotic cells by oridonin-treated human histocytic lymphoma U937 cells. Arch Biochem Biophys 518:31–41

    Article  CAS  PubMed  Google Scholar 

  36. Zeng R, Chen Y, Zhao S et al (2012) Autophagy counteracts apoptosis in human multiple myeloma cells exposed to oridonin in vitro via regulating intracellular ROS and SIRT1. Acta Pharmacol Sin 33:91–100

    Article  CAS  PubMed  Google Scholar 

  37. Wang H, Yu Y, Jiang Z et al (2016) Next-generation proteasome inhibitor MLN9708 sensitizes breast cancer cells to doxorubicin-induced apoptosis. Sci Rep 6:26456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang J, Tan X, Yang Q et al (2016) Inhibition of autophagy promotes apoptosis and enhances anticancer efficacy of adriamycin via augmented ROS generation in prostate cancer cells. Int J Biochem Cell Biol 77:80–90

    Article  CAS  PubMed  Google Scholar 

  39. Milano V, Piao Y, LaFortune T et al (2009) Dasatinib-induced autophagy is enhanced in combination with temozolomide in glioma. Mol Cancer Ther 8:394–406

    Article  CAS  PubMed  Google Scholar 

  40. Cheng Y, Zhang Y, Zhang L et al (2012) MK-2206, a novel allosteric inhibitor of Akt, synergizes with gefitinib against malignant glioma via modulating both autophagy and apoptosis. Mol Cancer Ther 11:154–164

    Article  CAS  PubMed  Google Scholar 

  41. Zeng R, He J, Peng J et al (2012) The time-dependent autophagy protects against apoptosis with possible involvement of Sirt1 protein in multiple myeloma under nutrient depletion. Ann Hematol 91:407–417

    Article  CAS  PubMed  Google Scholar 

  42. Corcelle E, Djerbi N, Mari M et al (2007) Control of the autophagy maturation step by the MAPK ERK and p38: lessons from environmental carcinogens. Autophagy 3:57–59

    Article  CAS  PubMed  Google Scholar 

  43. Zhang J, Chiu JF, Zhang HW et al (2013) Autophagic cell death induced by resveratrol depends on the Ca(2+)/AMPK/mTOR pathway in A549 cells. Biochem Pharmacol 86:317–328

    Article  CAS  PubMed  Google Scholar 

  44. Chen L, Jiang Z, Ma H et al (2016) Volatile oil of Acori Graminei Rhizoma-induced apoptosis and autophagy are dependent on p53 status in human glioma cells. Sci Rep 6:21148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. An HK, Kim KS, Lee JW et al (2016) Mimulone-induced autophagy through p53-mediated AMPK/mTOR pathway increases caspase-mediated apoptotic cell death in A549 human lung cancer cells. PLoS ONE 9:e114607

    Article  CAS  Google Scholar 

  46. Amin AR, Khuri FR, Chen ZG et al (2009) Synergistic growth inhibition of squamous cell carcinoma of the head and neck by erlotinib and epigallocatechin-3-gallate: the role of p53-dependent inhibition of nuclear factor-kappaB. Cancer Prev Res 2:538–545

    Article  CAS  Google Scholar 

  47. Vequaud E, Seveno C, Loussouarn D et al (2015) YM155 potently triggers cell death in breast cancer cells through an autophagy-NF-κB network. Oncotarget 6:13476–13486

    Article  PubMed  PubMed Central  Google Scholar 

  48. Li T, Zhang Q, Zhang J et al (2014) Fenofibrate induces apoptosis of triple-negative breast cancer cells via activation of NF-κB pathway. BMC Cancer 14:96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhao B, Ma Y, Xu Z et al (2014) Hydroxytyrosol, a natural molecule from olive oil, suppresses the growth of human hepatocellular carcinoma cells via inactivating AKT and nuclear factor-kappa B pathways. Cancer Lett 347:79–87

    Article  CAS  PubMed  Google Scholar 

  50. Copetti T, Bertoli C, Dalla E et al (2009) p65/RelA modulates BECN1 transcription and autophagy. Mol Cell Biol 29:2594–25608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Park SE, Yi HJ, Suh N et al (2016) Inhibition of EHMT2/G9a epigenetically increases the transcription of Beclin-1 via an increase in ROS and activation of NF-kappaB. Oncotarget 7:39796–39808

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Numbers: 81373797 and 81102855). This study is also supported by the China Postdoctoral Science Special Foundation (Grant Number: 2014T70224) and the China Postdoctoral Science Foundation (Grant Number: 2013M541192).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Kang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIF 258 KB)

Supplementary material 1 (DOCX 13 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, S., Huang, Y., Zhang, Q. et al. Molecular mechanisms of apoptosis and autophagy elicited by combined treatment with oridonin and cetuximab in laryngeal squamous cell carcinoma. Apoptosis 24, 33–45 (2019). https://doi.org/10.1007/s10495-018-1497-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-018-1497-0

Keywords

Navigation