Skip to main content
Log in

RANS Simulations of Statistically Stationary Premixed Turbulent Combustion Using Flame Speed Closure Model

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Turbulent Flame Closure (TFC) and Flame Speed Closure (FSC) models of the influence of turbulence on premixed combustion are applied to RANS simulations of five sets of experiments with (i) highly turbulent, oblique, confined ONERA flames under elevated temperatures, (ii) highly turbulent, conical, confined PSI flames under elevated temperatures and pressures, (iii) open V-shaped flames, and weakly turbulent Bunsen (iv) Erlangen and (v) Orléans flames under the room conditions. Besides flame geometry, pressure, and initial temperature, bulk flow velocities, turbulence characteristics, and mixture compositions are different in these five sets of flames, with the equivalence ratio being varied in each set. Turbulence is modeled invoking either the standard or RNG kε model. The same standard value A = 0.5 of a single constant of the TFC or FSC model is used in all these simulations, but certain input parameters of the turbulence model are tuned by investigating a single reference case for each set of flames. The TFC and FSC combustion models yield similar results when simulating the PSI flames, but the FSC model shows better performance in predicting burning rate for four other sets of flames. All in all, results computed using the FSC model agree reasonably well with the majority of the experimental data utilized to test the model, with a few exceptions discussed in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lipatnikov, A.N., Chomiak, J.: Turbulent flame speed and thickness: phenomenology, evaluation, and application in multi-dimensional simulations. Prog. Energy Combust. Sci. 28, 1–74 (2002)

    Article  Google Scholar 

  2. Veynante, D., Vervisch, L.: Turbulent combustion modeling. Prog. Energy Combust. Sci. 28, 193–266 (2002)

    Article  Google Scholar 

  3. Bilger, R.W., Pope, S.B., Bray, K.N.C., Driscoll, J.F.: Paradigms in turbulent combustion research. Proc. Combust. Inst. 30, 21–42 (2005)

    Article  Google Scholar 

  4. Swaminathan, N., Bray, K.N.C. (eds.): Turbulent Premixed Flames. Cambridge University Press, Cambridge (2011)

  5. Echekki, T., Mastorakos, E. (eds.): Turbulent Combustion Modeling. Springer, Berlin (2011)

  6. Zimont, V.L., Lipatnikov, A.N.: To computations of the heat release rate in turbulent flames. Doklady Phys. Chem. 332, 592–594 (1993)

    Google Scholar 

  7. Zimont, V.L., Lipatnikov, A.N.: A numerical model of premixed turbulent combustion. Chem. Phys. Reports 14, 993–1025 (1995)

    Google Scholar 

  8. Karpov, V.P., Lipatnikov, A.N., Zimont, V.L.: A test of an engineering model of premixed turbulent combustion. Proc. Combust. Inst. 26, 249–257 (1996)

    Article  Google Scholar 

  9. Prudnikov, A.G.: Burning of homogeneous fuel-air mixtures in a turbulent flow. In: Raushenbakh, B.V (ed.) Physical Principles of the Working Process in Combustion Chambers of Jet Engines, pp 244–336. Clearing House for Federal Scientific & Technical Information, Springfield (1967)

    Google Scholar 

  10. Zimont, V.L.: Theory of turbulent combustion of a homogeneous fuel mixture at high Reynolds number. Combust. Explos. Shock Waves 15, 305–311 (1979)

    Article  Google Scholar 

  11. Lipatnikov, A.N.: Fundamentals of Premixed Turbulent Combustion. CRC Press, Boca Raton (2012)

    Book  Google Scholar 

  12. Lipatnikov, A.N., Chomiak, J.: A simple model of unsteady turbulent flame propagation. SAE Paper 972993 (1997)

  13. Lipatnikov, A.N., Chomiak, J.: Transient and geometrical effects in expanding turbulent flames. Combust. Sci. Technol. 154, 75–117 (2000)

    Article  Google Scholar 

  14. Wallesten, J., Lipatnikov, A.N., Chomiak, J.: Modeling of stratified combustion in a DI SI engine using detailed chemistry pre-processing. Proc. Combust. Inst. 29, 703–709 (2002)

    Article  Google Scholar 

  15. Sathiah, P., Lipatnikov, A.N.: Effects of flame development on stationary premixed turbulent combustion. Proc. Combust. Inst. 31, 3115–3122 (2007)

    Article  Google Scholar 

  16. Moreau, P., Boutier, A.: Laser velocimeter measurements in a turbulent flame. Proc. Combust. Inst. 16, 1747–1756 (1976)

    Article  Google Scholar 

  17. Moreau, P.: Turbulent flame development in a high velocity premixed flow. AIAA Paper 77/49 (1977)

  18. Magre, P., Moreau, P., Collin, G., Borghi, R., Péalat, M.: Further studies by CARS of premixed turbulent combustion in a high velocity flow. Combust. Flame 71, 147–168 (1988)

    Article  Google Scholar 

  19. Dinkelacker, F., Hölzler, S.: Investigation of a turbulent flame speed closure approach for premixed flame calculations. Combust. Sci. Technol. 158, 321–340 (2000)

    Article  Google Scholar 

  20. Siewert, P.: Flame front characteristics of turbulent lean premixed methane/air flames at high-pressure. PhD Thesis, ETHZ Zürich (2006)

  21. Griebel, P., Siewert, P., Jansohn, P.: Flame characteristics of turbulent lean premixed methane/air flames at high-pressure: turbulent flame speed and flame brush thickness. Proc. Combust. Inst. 31, 3083–3090 (2007)

    Article  Google Scholar 

  22. Pfadler, S., Leipertz, A., Dinkelacker, F.: Systematic experiments on turbulent premixed Bunsen flames including turbulent flux measurements. Combust. Flame 152, 616–631 (2008)

    Article  Google Scholar 

  23. Cohé, C., Chauveau, C., Gökalp, I., Kurtuluş, D.F.: CO 2 addition and pressure effects on laminar and turbulent lean premixed CH 4 air flames. Proc. Combust. Inst. 32, 1803–1810 (2009)

    Article  Google Scholar 

  24. Zimont, V.L.: Gas premixed combustion at high turbulence. Turbulent flame closure combustion model. Exp. Thermal Fluid Sci. 21, 179–186 (2000)

    Article  Google Scholar 

  25. Zimont, V.L.: Kolmogorov’s legacy and turbulent premixed combustion modelling. In: Carey, W.J (ed.) New Developments in Combustion Research, pp 1–93. Nova Science Publishers, New York (2006)

    Google Scholar 

  26. Bray, K.N.C., Moss, J.B.: A unified statistical model for the premixed turbulent flame. Acta Astronaut. 4, 291–319 (1977)

    Article  Google Scholar 

  27. Lipatnikov, A.N., Chomiak, J.: A theoretical study of premixed turbulent flame development. Proc. Combust. Inst. 30, 843–850 (2005)

    Article  Google Scholar 

  28. Lipatnikov, A.N., Chomiak, J.: Self-similarly developing, premixed, turbulent flames: a theoretical study. Phys. Fluids 17, 065105 (2005)

    Article  MathSciNet  Google Scholar 

  29. Kuznetsov, V.R.: Certain peculiarities of movement of a flame front in a turbulent flow of homogeneous fuel mixtures. Combust. Explos. Shock Waves 11, 487–493 (1975)

    Article  Google Scholar 

  30. Clavin, P., Williams, F.A.: Theory of premixed-flame propagation in large-scale turbulence. J. Fluid Mech. 90, 589–604 (1979)

    Article  MATH  Google Scholar 

  31. Launder, B.E., Spalding, D.B.: Mathematical Models of Turbulence. Academic Press, London (1972)

    MATH  Google Scholar 

  32. Libby, P.A., Bray, K.N.C.: Variable density effects in premixed turbulent flames. AIAA J. 15, 1186–1193 (1977)

    Article  Google Scholar 

  33. Bray, K.N.C.: Methods of including realistic chemical reaction mechanisms in turbulent combustion models. In: Warnatz, J., Jager, W (eds.) Complex Chemical Reaction Systems. Mathematical Modelling and Simulation, pp 356–375. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  34. Lipatnikov, A.N., Chomiak, J.: Molecular transport effects on turbulent flame propagation and structure. Prog. Energy Combust. Sci. 31, 1–73 (2005)

    Article  Google Scholar 

  35. Taylor, G.I.: Statistical theory of turbulence. IV. Diffusion in a turbulent air stream. Proc. R. Soc. Lond. A 151, 465–478 (1935)

    Article  Google Scholar 

  36. Zimont, V.L.: Generalized TFC turbulent premixed combustion model aimed for the ANSYS packages. Sixth Mediterranean Combustion Symposium, June 7–11, 2009. Proceedings

  37. Damköhler, G.: Der einfuss der turbulenz auf die flammengeschwindigkeit in gasgemischen. Zs. Electrochem. 46, 601–652 (1940)

    Google Scholar 

  38. Shchelkin, K.I.: On combustion in a turbulent flow. Zhournal Tekhnicheskoi Fiz. 13, 520–530 (1943)

    Google Scholar 

  39. Chaudhuri, S., Akkerman, V., Law, C.K.: Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability. Phys. Rev. E 84, 026322 (2011)

    Article  Google Scholar 

  40. Zimont, V.L., Pagnini, G.: Lagrangian properties of turbulent diffusion with passive chemical reaction in the framework of the premixed combustion theory. Phys. Fluids 23, 035101 (2011)

    Article  Google Scholar 

  41. Wenzel, H., Peters, N.: Direct numerical simulation and modeling of kinematic restoration, dissipation and gas expansion effects of premixed flames in homogeneous turbulence. Combust. Sci. Technol. 158, 273–297 (2000)

    Article  Google Scholar 

  42. Treurniet, T.C., Nieuwstadt, F.T.M., Boersma, B.J.: Direct numerical simulation of homogeneous turbulence in combination with premixed combustion at low Mach number modelled by the G-equation. J. Fluid Mech. 565, 25–62 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  43. Yu, R., Lipatnikov, A.N., Bai, X.S.: Three-dimensional direct numerical simulation study of conditioned moments associated with front propagation in turbulent flows. Phys. Fluids 26, 085104 (2014)

    Article  Google Scholar 

  44. Maciocco, L., Zimont, V.L.: Test of the TFC combustion model on high velocity premixed CH 4-air combustion in a channel. 20-th Annual Meeting of the Italian Section of the Combustion Institute “Frantic97”, Cagliari (1997)

  45. Zimont, V.L., Biagioli, F., Syed, K.: Modelling turbulent premixed combustion in the intermediate steady propagation regime. Prog. Comput. Fluid Dyn. 1, 14–28 (2001)

    Google Scholar 

  46. Ghirelli, F.: Turbulent premixed flame model based on a recent dispersion model. Comput. Fluids 44, 369–376 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  47. Duwig, C., Fuchs, L., Griebel, P., Siewert, P., Boschek, W.: Study of a confined turbulent jet: influence of combustion and pressure. AIAA J. 45, 624–639 (2007)

    Article  Google Scholar 

  48. Keppeler, R., Tangermann, E., Allaudin, U., Pfitzner, M.: LES of low to high turbulent combustion in an elevated pressure environment. Flow Turbul. Combust. 92, 767–802 (2014)

    Article  Google Scholar 

  49. Moreau, V.: A self-similar premixed turbulent flame model. Appl. Math. Model 33, 835–851 (2009)

    Article  MATH  Google Scholar 

  50. Halter, F., Chauveau, C., Gökalp, I.: Characterization of the effects of hydrogen addition in premixed methane/air flames. Int. J. Hydrog. Energy 32, 2585–2592 (2007)

    Article  Google Scholar 

  51. Hernández-Pérez, F., Groth, C.P.T., Gülder, Ö.: Large-eddy simulation of lean hydrogen-methane turbulent premixed flames in the methane-dominated regime. Int. J. Hydrog. Energy 39, 7147–7157 (2014)

    Article  Google Scholar 

  52. Kee, R.J., Crcar, J.F., Smooke, M.D., Miller, J.A.: PREMIX: a FORTRAN program for modeling steady laminar one-dimensional premixed flames. Sandia Report SAND85-8249, Sandia National Laboratories, CA (1985)

  53. Kee, R.J., Rupley, F.M., Miller, J.A.: CHEMKIN-II: a FORTRAN chemical kinetics package for the analysis of gas-phase chemical kinetics. Sandia Report SAND89-8009, Sandia National Laboratories, CA (1989)

  54. Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, J.W.C., Lissianski, V.V., Qin, Z.: GRI-Mech 3.0. http://www.me.berkeley.edu/gri_mech/ (1999)

  55. Konnov, A.A.: Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism. Combust. Flame 156, 2093–2105 (2009)

    Article  Google Scholar 

  56. Daniele, S., Mantzaras, J., Jansohn, P., Denisov, A., Boulouchos, K.: Flame front/turbulence interaction for syngas fuels in the thin reaction zones regime: turbulent and stretched laminar flame speeds at elevated pressures and temperatures. J. Fluid Mech. 724, 36–68 (2013)

    Article  MATH  Google Scholar 

  57. Sabelnikov, V.A., Lipatnikov, A.N.: A simple model for evaluating conditioned velocities in premixed turbulent flames. Combust. Sci. Technol. 183, 588–613 (2011)

    Article  Google Scholar 

  58. Sabelnikov, V.A., Lipatnikov, A.N.: Towards an extension of TFC model of premixed turbulent combustion. Flow Turbul. Combust. 90, 387–400 (2013)

    Article  Google Scholar 

  59. ANSYS FLUENT 12, Documentation. http://www.ansys.com (2010)

  60. Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B., Speziale, C.G.: Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A 4, 1510–1520 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  61. Shih, T.-H., Liou, W.W., Shabbir, A., Yang, Z., Zhu, J.: A new—eddy-viscosity model for high Reynolds number turbulent flows—model development and validation. Comput. Fluids 24, 227–238 (1995)

    Article  MATH  Google Scholar 

  62. Wilcox, D.C.: Turbulence Modeling for CFD. DCW Industries. La Canada, California (1998)

    Google Scholar 

  63. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994)

    Article  Google Scholar 

  64. OpenFOAM: Open Source CFD toolbox. http://www.openfoam.com (2011)

  65. Launder, B., Sharma, B.: Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Transf. 1, 131–137 (1974)

    Article  Google Scholar 

  66. Lipatnikov, A.N., Chomiak, J.: Effects of premixed flames on turbulence and turbulent scalar transport. Prog. Energy Combust. Sci. 36, 1–102 (2010)

    Article  Google Scholar 

  67. Lipatnikov, A.N.: Can we characterize turbulence in premixed flames?. Combust. Flame 156, 1242–1247 (2009)

    Article  Google Scholar 

  68. Lipatnikov, A.N.: Conditioned moments in premixed turbulent reacting flows. Proc. Combust. Inst. 33, 1489–1496 (2011)

    Article  Google Scholar 

  69. Lipatnikov, A.N., Sabelnikov, V.A.: Transition from countergradient to gradient scalar transport in developing premixed turbulent flames. Flow Turbul. Combust. 90, 401–418 (2013)

    Article  Google Scholar 

  70. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  71. Yeung, P.K., Pope, S.B.: Lagrangian statistics from direct numerical simulations of isotropic turbulence. J. Fluid Mech. 207, 531–586 (1989)

    Article  MathSciNet  Google Scholar 

  72. Sreenivasan, K.R.: An update of the energy dissipation rate in isotropic turbulence. Phys. Fluids 10, 528–529 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  73. Yeung, P.K.: Lagrangian investigations of turbulence. Annu. Rev. Fluid Mech. 34, 115–142 (2002)

    Article  MathSciNet  Google Scholar 

  74. Donzis, D.A., Sreenivasan, K.R., Yeung, P.K.: Scalar dissipation rate and dissipative anomaly in isotropic turbulence. J. Fluid Mech. 532, 199–216 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  75. Tominaga, Y., Stathopoulos, T.: Turbulent Schmidt numbers for CFD analysis with various types of flow field. Atmos. Environ. 41, 8091–8099 (2007)

    Article  Google Scholar 

  76. Bilger, R.W., Saetran, L.R., Krishnamoorthy, L.V.: Reaction in a scalar mixing layer. J. Fluid Mech. 233, 211–242 (1991)

    Article  Google Scholar 

  77. Prudnikov, A.G.: Flame turbulence. Proc. Combust. Inst. 7, 575–582 (1959)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Lipatnikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasari, E., Verma, S. & Lipatnikov, A.N. RANS Simulations of Statistically Stationary Premixed Turbulent Combustion Using Flame Speed Closure Model. Flow Turbulence Combust 94, 381–414 (2015). https://doi.org/10.1007/s10494-014-9585-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-014-9585-x

Keywords

Navigation