Skip to main content
Log in

Investigation of non-premixed flame combustion characters in GO2/GH2 shear coaxial injectors using non-intrusive optical diagnostics

  • Article
  • Fluid Dynamics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Single-element combustor experiments are conducted for three shear coaxial geometry configuration injectors by using gaseous oxygen and gaseous hydrogen (GO2/GH2) as propellants. During the combustion process, several spatially and timeresolved non-intrusive optical techniques, such as OH planar laser induced fluorescence (PLIF), high speed imaging, and infrared imaging, are simultaneously employed to observe the OH radical concentration distribution, flame fluctuations, and temperature fields. The results demonstrate that the turbulent flow phenomenon of non-premixed flame exhibits a remarkable periodicity, and the mixing ratio becomes a crucial factor to influence the combustion flame length. The high speed and infrared images have a consistent temperature field trend. As for the OH-PLIF images, an intuitionistic local flame structure is revealed by single-shot instantaneous images. Furthermore, the means and standard deviations of OH radical intensity are acquired to provide statistical information regarding the flame, which may be helpful for validation of numerical simulations in future. Parameters of structure configurations, such as impinging angle and oxygen post thickness, play an important role in the reaction zone distribution. Based on a successful flame contour extraction method assembled with non-linear anisotropic diffusive filtering and variational level-set, it is possible to implement a fractal analysis to describe the fractal characteristics of the non-premixed flame contour. As a result, the flame front cannot be regarded as a fractal object. However, this turbulent process presents a self-similarity characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Muszynski M, Alliot P. Progress of the In-Space Propulsion (ISP-1) project. AIAA Paper, 2011, AIAA-2011-5553

    Book  Google Scholar 

  2. Clauss W, Manfletti C, Sender J, et al. Temperature field in a cryogenic LOX/CH4 spray flame. AIAA Paper, 2010, AIAA-2010-7054

    Book  Google Scholar 

  3. Han C, Zhang P, Ye T H, et al. Numerical study of methane/air jet flame in vitiated co-flow using tabulated detailed chemistry. Sci China Tech Sci, 2014, 57: 1750–1760

    Article  Google Scholar 

  4. Yu J, Meng H. A numerical study of counterflow diffusion flames of methane/air at various pressures. Sci China Tech Sci, 2014, 57: 615–624

    Article  Google Scholar 

  5. Tian X J, Xing S X, Cui Y F, et al. CIVB flashback analysis of hydrogen flame based on azimuthal vorticity at mixing zone exit. Sci China Tech Sci, 2014, 57: 2466–2474

    Article  Google Scholar 

  6. Tian H, Li X T, Yu N J, et al. Numerical and experimental investigation on the effect of aft mixing chamber diaphragm in hybrid rocket motor. Sci China Tech Sci, 2013, 56: 2721–2731

    Article  Google Scholar 

  7. Wang X W, Cai G B, Gao Y S, et al. High flowrate injector with gaseous hydrogen and gaseous oxygen. Sci China Tech Sci, 2011, 54: 2958–2973

    Article  Google Scholar 

  8. Salgues D, Mouis G, Lee S Y, et al. Shear and swirl coaxial injector studies of LOX/GCH4 rocket combustion using non-intrusive laser diagnostics. AIAA Paper, 2006, AIAA-2006-757

    Book  Google Scholar 

  9. Vaidyanathan A, Gustavsson J, Segal C. Heat fluxes/OH PLIF measurements in a GO2/GH2 single-element, shear injector. AIAA Paper, 2006, AIAA-2007-5591

    Google Scholar 

  10. Qin W J, Xie M Z, Jia M, et al. Large eddy simulation and proper orthogonal decomposition analysis of turbulent flows in a direct injection spark ignition engine: Cyclic variation and effect of valve lift. Sci China Tech Sci, 2014, 57: 489–504

    Article  Google Scholar 

  11. Wang H B, Wang Z G, Sun M B, et al. Hybrid Reynolds-averaged Navier-Stokes/large-eddy simulation of jet mixing in a supersonic crossflow. Sci China Tech Sci, 2013, 56: 1435–1448

    Article  Google Scholar 

  12. Ren Z Y, Lu Z, Hou L Y, et al. Numerical simulation of turbulent combustion: Scientific challenges. Sci China-Phys Mech Astron, 2014, 57: 1495–1503

    Article  ADS  Google Scholar 

  13. Xu M Y, Zhang J P, Mi J C, et al. PIV measurements of turbulent jets issuing from triangular and circular orifice plates. Sci China-Phys Mech Astron, 2013, 2013, 56: 1176–1186

    Article  Google Scholar 

  14. Han Y, Cai G B, Xu X, et al. A conditioned level-set method with block-division strategy to flame front extraction based on OH-PLIF measurements. Chin Phys B, 2014, 23: 058901

    Article  ADS  Google Scholar 

  15. Donbar J M, Driscoll J F, Carter C D. Reaction zone structure in turbulent nonpremixed jet flames-from CH-OH PLIF images. Combust Flame, 2000, 122: 1–19

    Article  Google Scholar 

  16. Kalitan D M, Salgues D, Mouis A G, et al. Experimental liquid rocket swirl coaxial injector study using non-intrusive optical techniques. AIAA Paper, AIAA 2005-4299

    Book  Google Scholar 

  17. Lv J Y, Cao X, Meng C L. Fractal characteristics of soot particles in ethylene/air inverse diffusion flame. Adv Mater Res, 2014, 953: 1196–1200

    Article  Google Scholar 

  18. Wang J H, Wei Z L, Zhang M, et al. A review of engine application and fundamental study on turbulent premixed combustion of hydrogen enriched natural gas. Sci China Tech Sci, 2014, 57: 445–451

    Article  Google Scholar 

  19. Lang S N, Zhao B, Liu X J, et al. A new image processing method for discriminating internal layers from radio echo sounding data of ice sheets via a combined robust principal component analysis and total variation approach. Sci China Tech Sci, 2014, 57: 838–846

    Article  Google Scholar 

  20. Zhang Z G, Xu K L, Ta D A, et al. Joint spectrogram segmentation and ridge-extraction method for separating multimodal guided waves in long bones. Sci China-Phys Mech Astron, 2013, 56: 1317–1323

    Article  ADS  Google Scholar 

  21. Zhang Y, Wang Y, Jia P. Measuring the kinetic parameters of saltating sand grains using a high-speed camera. Sci China-Phys Mech Astron, 2014, 57: 1137–1143

    Article  ADS  Google Scholar 

  22. Yamamoto K, Ozeki M, Hayashi N, et al. Burning velocity and OH concentration in premixed combustion. P Combust Inst, 2009, 32: 1227–1235

    Article  Google Scholar 

  23. Mandelbrot B B. The Fractal Geometry of Nature. New York: W. H. Freeman and Company, 1983. 97

    Google Scholar 

  24. Chatakonda O, Hawkes E R, Aspden A J, et al. On the fractal characteristics of low Damköhler number flames. Combust Flame, 2013, 160: 2422–2433

    Article  Google Scholar 

  25. Wada Y, Kuwana K. Propagation velocity and fractal structure of premixed flame during gas explosion. J Chem Eng Jan, 2012, 45: 823–828

    Article  Google Scholar 

  26. Fan H, Zheng H. MRT-LBM-based numerical simulation of seepage flow through fractal fracture networks. Sci China Tech Sci, 2013, 56: 3115–3122

    Article  Google Scholar 

  27. Mukaiyama K J, Shibayama S M, Kuwana K. fractal structures of hydrodynamically unstable and diffusive-thermally unstable flames. Combust Flame, 2013, 160: 2471–2475

    Article  Google Scholar 

  28. Zhao Y X, Yi S H, Tian L F, et al. The fractal measurement of experimental images of supersonic turbulent mixing layer. Sci China Ser G-Phys Mech Astron, 2008, 51: 1134–1143

    Article  ADS  Google Scholar 

  29. Theron M, Bellenoue M. Experimental investigation of the effects of heat release on mixing processes and flow structure in a high-speed subsonic turbulent H2 jet. Combust Flame, 2006, 145: 688–702

    Article  Google Scholar 

  30. Vaidyanathan A. OH-PLIF measurements and accuracy investigation in high pressure GH2/GO2 combustion. Dissertation for the Doctoral Degree. Florida: University of Florida, 2008. 98–99

    Google Scholar 

  31. Crosley D R, Smith G P. Laser-induced fluorescence spectroscopy for combustion diagnostics. Opt Eng, 1983, 22: 545–553

    Article  ADS  Google Scholar 

  32. Bayley A E, Hardalupas Y, Taylor A M K P. Local curvature measurements of a lean, partially premixed swirl-stabilised flame. Exp Fluids, 2012, 52: 963–983

    Article  Google Scholar 

  33. Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE T Pattern Anal, 1990, 12: 629–639

    Article  Google Scholar 

  34. Catté F, Lions P L, Morel J M, et al. Image selective smoothing and edge detection by nonlinear diffusion. SIAM J Numer Anal, 1992, 29: 182–193

    Article  MathSciNet  MATH  Google Scholar 

  35. Malm H, Sparr G, Hult J, et al. Nonlinear diffusion filtering of images obtained by planar laser-induced fluorescence spectroscopy. J Opt Soc Am, 2000, 17: 2148–2156

    Article  ADS  Google Scholar 

  36. Li C, Huang R, Ding Z, et al. A variational level set approach to segmentation and bias correction of images with intensity inhomogeneity. Medical Image Comp Computer-Assisted Inter, 2008, 5241: 1083–1091

    Google Scholar 

  37. Li C, Huang R, Ding Z, et al. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE T Image Process, 2011, 20: 2007–2016

    Article  ADS  MathSciNet  Google Scholar 

  38. Li C, Xu C, Gui C, et al. Distance regularized level set evolution and its application to image segmentation. IEEE T Image Process, 2010, 19: 3243–3254

    Article  ADS  MathSciNet  Google Scholar 

  39. Paul K T, Suresh M, Charles L M, et al. An approach to improved credibility of CFD simulations for rocket injector design. AIAA Paper, 2007, AIAA-2007-5572

    Google Scholar 

  40. Wang X W, Cai G B, Huo H F. Numerical study of high-pressure GO2/GH2 combustion of a single-element injector. Sci China Tech Sci, 2012, 55: 2757–2768

    Article  Google Scholar 

  41. Justin M L, Sibtosh P, Roger D, et al. Toward time-resolved measurements in a gaseous hydrogen / oxygen rocket. AIAA Paper, 2009, AIAA-2009-5395

    Google Scholar 

  42. Lin J, West J S, Williams R W, et al. CFD code validation of wall heat fluxes for a GO2/GH2 single element combustor. AIAA Paper, 2005, AIAA-2005-4524

    Book  Google Scholar 

  43. Snyder R, Herding G, Rolon J C, et al. Analysis of flame patterns in cryogenic propellant combustion. Combust Sci Technol, 1997, 124: 331–370

    Article  Google Scholar 

  44. Bérubé D, Jébrak M. High precision boundary fractal analysis for shape characterization. Compute Geosci-UK, 1999, 25: 1059–1071

    Article  Google Scholar 

  45. Panico J, Sterling P. Retinal neurons and vessels are not fractal but space-filling. J Comp Neurol, 1995, 361: 479–490

    Article  Google Scholar 

  46. Grout S, Dumouchel C, Cousin J, et al. Fractal analysis of atomizing liquid flows. Int J Mul Flow, 2007, 33: 1023–1044

    Article  Google Scholar 

  47. Tucker P K, Menon S, Merkle C L, et al. Validation of high-fidelity CFD simulations for rocket injector design. AIAA Paper, 2008, AIAA-2008-5226

    Book  Google Scholar 

  48. Lee T W, North G L, Santavicca D A. Surface properties of turbulent premixed propane/air flames at various Lewis numbers. Combust Flame, 1993, 93: 445–456

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to NanJia Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, J., Yu, N. & Cai, G. Investigation of non-premixed flame combustion characters in GO2/GH2 shear coaxial injectors using non-intrusive optical diagnostics. Sci. China Phys. Mech. Astron. 58, 124702 (2015). https://doi.org/10.1007/s11433-015-5739-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-015-5739-7

Keywords

Navigation