Skip to main content
Log in

The Representation Theory of Brauer Categories I: Triangular Categories

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

This article has been updated

Abstract

This is the first in a series of papers in which we study representations of the Brauer category and its allies. We define a general notion of triangular category that abstracts key properties of the triangular decomposition of a semisimple complex Lie algebra, and develop a highest weight theory for them. We show that the Brauer category, the partition category, and a number of related diagram categories admit this structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 24 August 2022

    In this article the ‘Communicated by’ note was incorrect and should have read ‘Communicated by Henning Krause’.

References

  1. Abramsky, S.: Temperley-Lieb algebra: from knot theory to logic and computation via quantum mechanics. In: Chen, G., Kauffman, L., Lomonaco, S. (eds.) Mathematics of Quantum Computing and Technology, pp. 415–458. Taylor and Francis. arXiv:9102737v1 (2007)

  2. Bellamy, G., Thiel, U.: Highest weight theory for finite-dimensional graded algebras with triangular decomposition. Adv. Math. 330, 361–419 (2018). arXiv:1705.08024v3

    MathSciNet  MATH  Google Scholar 

  3. Benkart, G., Chakrabarti, M., Halverson, T., Leduc, R., Lee, C., Stroomer, J.: Tensor product representations of general linear groups and their connections with Brauer algebras. J. Algebra 166(3), 529–567 (1994)

    MathSciNet  MATH  Google Scholar 

  4. Bernshtein, I.N., Gel’fand, I.M., Gel’fand, S.I.: Category of \(\mathfrak{g}\)-modules. Funktsional. Anal. i Prilozhen. 10(2), 1–8 (1976); English transl., Funct. Anal. Appl. 10, 87–92 (1976)

  5. Brauer, R.: On algebras which are connected with the semisimple continuous groups. Ann. Math. 38(4), 857–872 (1937)

    MathSciNet  MATH  Google Scholar 

  6. Brundan, J., Ellis, A.P.: Monoidal supercategories. Commun. Math. Phys. 351, 1045–1089 (2017). arXiv:1603.05928v3

    MathSciNet  MATH  Google Scholar 

  7. Brundan, J., Stroppel, C.: Highest weight categories arising from Khovanov’s diagram algebra I: cellularity. Mosc. Math. J. 11(4), 685–722 (2011). arXiv:0806.1532v3

    MathSciNet  MATH  Google Scholar 

  8. Brundan, J., Stroppel, C.: Highest weight categories arising from Khovanov’s diagram algebra II: Koszulity. Transform. Groups 15, 1–45 (2010). arXiv:0806.3472v2

    MathSciNet  MATH  Google Scholar 

  9. Brundan, J., Stroppel, C.: Highest weight categories arising from Khovanov’s diagram algebra III: category \(\cal{O} \). Represent. Theory 15, 170–243 (2011). arXiv:0812.1090v3

    MathSciNet  MATH  Google Scholar 

  10. Brundan, J., Stroppel, C.: Highest weight categories arising from Khovanov’s diagram algebra IV: the general linear supergroup. J. Eur. Math. Soc. 14(2), 373–419 (2012). arXiv:0907.2543v2

    MathSciNet  MATH  Google Scholar 

  11. Brundan, J., Stroppel, C.: Semi-infinite highest weight categories. arXiv:1808.08022v2

  12. Carqueville, N., Runkel, I.: Introductory lectures on topological quantum field theory. Banach Center Publ. 114, 9–47 (2017). arXiv:1705.05734v1

    MathSciNet  MATH  Google Scholar 

  13. Chen, J.: The Temperley–Lieb categories and skein modules. arXiv:1502.06845v1

  14. Cheng, S.J., Wang, W.: Dualities and Representations of Lie Superalgebras. Graduate Studies in Mathematics, vol. 144. American Mathematical Society, Providence (2012)

  15. Church, T., Ellenberg, J.S., Farb, B.: FI-modules and stability for representations of symmetric groups. Duke Math. J. 164(9), 1833–1910 (2015). arXiv:1204.4533v4

    MathSciNet  MATH  Google Scholar 

  16. Church, T., Ellenberg, J.S., Farb, B., Nagpal, R.: FI-modules over Noetherian rings. Geom. Topol. 18(5), 2951–2984 (2014). arXiv:1210.1854v2

    MathSciNet  MATH  Google Scholar 

  17. Cline, E., Parshall, B., Scott, L.: Finite-dimensional algebras and highest weight categories. J. Reine Angew. Math. 391, 85–99 (1988)

    MathSciNet  MATH  Google Scholar 

  18. Comes, J.: Jellyfish partition categories. Algebr. Represent. Theory 23, 327–347 (2020). arXiv:1612.05182v2

    MathSciNet  MATH  Google Scholar 

  19. Comes, J., Wilson, B.: Deligne’s category \( {{\rm Rep}}(GL_{\delta })\) and representations of general linear supergroups. Represent. Theory 16, 568–609 (2012). arXiv:1108.0652v1

    MathSciNet  MATH  Google Scholar 

  20. Coulembier, K.: The periplectic Brauer algebra. Proc. Lond. Math. Soc. 117(3), 441–482 (2018). arXiv:1609.06760v5

    MathSciNet  MATH  Google Scholar 

  21. Coulembier, K.: Ringel duals of Brauer algebras via super groups. Int. Math. Res. Not. IMRN (to appear). arXiv:1810.02948v2

  22. Coulembier, K., Ehrig, M.: The periplectic Brauer algebra II: decomposition multiplicities. J. Comb. Algebra 2(1), 19–46 (2018). arXiv:1701.04606v2

    MathSciNet  MATH  Google Scholar 

  23. Coulembier, K., Ehrig, M.: The periplectic Brauer algebra III: the Deligne category. arXiv:1704.07547v2

  24. Coulembier, K., Zhang, R.: Borelic pairs for stratified algebras. Adv. Math. 345, 53–115 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Cox, A., De Visscher, M., Doty, S., Martin, P.: On the blocks of the walled Brauer algebra. J. Algebra 320(1), 169–212 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Cox, A., de Visscher, M.: Diagrammatic Kazhdan–Lusztig theory for the (walled) Brauer algebra. J. Algebra 340(1), 151–181 (2011). arXiv:1009.4064v1

    MathSciNet  MATH  Google Scholar 

  27. Cox, A., De Visscher, M., Martin, P.: The blocks of the Brauer algebra in characteristic zero. Represent. Theory 13, 272–308 (2009). arXiv:math/0601387v2

    MathSciNet  MATH  Google Scholar 

  28. Deligne, P.: La catégorie des représentations du groupe symétrique \(S_t\), lorsque t n’est pas un entier naturel. In: Algebraic Groups and Homogeneous Spaces. Tata Inst. Fund. Res. Stud. Math., Tata Inst. Fund. Res., Mumbai, pp. 209–273 (2007)

  29. Doran, I.V., William, F., Wales, D.B., Hanlon, P.J.: On the semisimplicity of the Brauer centralizer algebras. J. Algebra 211(2), 647–685 (1999)

    MathSciNet  MATH  Google Scholar 

  30. Ehrig, M., Stroppel, C.: Koszul gradings on Brauer algebras. Int. Math. Res. Not. IMRN 13, 3970–4011 (2016). arXiv:1504.03924v1

    MathSciNet  MATH  Google Scholar 

  31. Entova. A., Inna, H., Vladimir, S.V.: Deligne categories and the limit of categories \(\text{Rep}(\mathbf{GL}(n \vert m))\). arXiv:1511.07699v2

  32. Entova-Aizenbud, I., Serganova, V.: Deligne categories and the periplectic Lie superalgebra. Int. Math. Res. Not. IMRN (to appear). arXiv:1807.09478v2

  33. Ernst, D.C.: Diagram calculus for a type affine Temperley–Lieb algebra. I. J. Pure Appl. Algebra 216(11), 2467–2488 (2012)

    MathSciNet  MATH  Google Scholar 

  34. Frenkel, I., Khovanov, M.: Canonical bases in tensor products and graphical calculus for \(U_q(\mathfrak{sl} _2)\). Duke Math. J. 87(3), 409–480 (1997)

    MathSciNet  Google Scholar 

  35. Ginzburg, V., Guay, N., Opdam, E., Rouquier, R.: On the category \(\cal{O} \) for rational Cherednik algebras. Invent. Math. 154, 617–651 (2003). arXiv:math/0212036v4

    MathSciNet  MATH  Google Scholar 

  36. Graham, J.J., Lehrer, G.I.: Cellular algebras. Invent. Math. 123, 1–34 (1996)

    MathSciNet  MATH  Google Scholar 

  37. Graham, J.J., Lehrer, G.I.: Diagram algebras, Hecke algebras and decomposition numbers at roots of unity. Ann. Sci. Éc. Norm. Supér. 36(4), 479–524 (2003)

    MathSciNet  MATH  Google Scholar 

  38. Güntürkün, S., Snowden, A.: The representation theory of the increasing monoid. arXiv:1812.10242v1

  39. Halverson, T., Ram, A.: Partition algebras. Eur. J. Combin. 26(6), 869–921 (2005). arXiv:math/0401314v2

    MathSciNet  MATH  Google Scholar 

  40. Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory. Graduate Texts in Mathematics, vol. 9. Springer, New York (1978)

    Google Scholar 

  41. Irving, R.S.: BGG algebras and the BGG reciprocity principle. J. Algebra 135(2), 363–380 (1990)

    MathSciNet  MATH  Google Scholar 

  42. Jantzen, J.C.: Representations of Algebraic Groups. Mathematical Surveys and Monographs, vol. 107, 2nd edn. American Mathematical Society, Providence (2003)

    Google Scholar 

  43. Jones, V.F.R.: The Potts Model and the Symmetric Group. Subfactors (Kyuzeso, 1993), pp. 259–267. World Sci. Publ., River Edge (1993)

  44. Jones, V.F.R.: A quotient of the affine Hecke algebra in the Brauer algebra. Enseign. Math. 40, 313–344 (1994)

    MathSciNet  MATH  Google Scholar 

  45. Józefiak, T., Pragacz, P., Weyman, J.: Resolutions of determinantal varieties and tensor complexes associated with symmetric and antisymmetric matrices. Young tableaux and Schur functors in algebra and geometry (Toruń, 1980), 109–189. Astérisque, 87–88, Soc. Math. France, Paris (1981)

  46. Jung, J.H., Kang, S.J.: Mixed Schur–Weyl–Sergeev duality for queer Lie superalgebras. J. Algebra 399, 516–545 (2014). arXiv:1208.5139v1

    MathSciNet  MATH  Google Scholar 

  47. Klucznik, M., Mazorchuk, V.: Parabolic decomposition for properly stratified algebras. J. Pure Appl. Algebra 171(1), 41–58 (2002)

    MathSciNet  MATH  Google Scholar 

  48. Koike, K.: On the decomposition of tensor products of the representations of the classical groups: by means of the universal characters. Adv. Math. 74(1), 57–86 (1989)

    MathSciNet  MATH  Google Scholar 

  49. Koike, K.: Spin representations and centralizer algebras for the Spinor groups. arXiv:math/0502397v1

  50. König, S.: Cartan decompositions and BGG-resolutions. Manuscripta Math. 86(1), 103–111 (1995)

    MathSciNet  MATH  Google Scholar 

  51. König, S., Xi, C.: When is a cellular algebra quasi-hereditary? Math. Ann. 315, 281–293 (1999)

    MathSciNet  MATH  Google Scholar 

  52. Krause, H.: Krull–Schmidt categories and projective covers. Expo. Math. 33(4), 535–549 (2015). arXiv:1410.2822v1

    MathSciNet  MATH  Google Scholar 

  53. Kuhn, N.J.: Generic representation theory of finite fields in non-describing characteristic. Adv. Math. 272, 598–610 (2015). arXiv:1405.0318v2

    MathSciNet  MATH  Google Scholar 

  54. Kujawa, J.R., Tharp, B.C.: The marked Brauer category. J. Lond. Math. Soc. 95(2), 393–413 (2017). arXiv:1411.6929v1

    MathSciNet  MATH  Google Scholar 

  55. Lam, T.Y.: A First Course in Noncommutative Rings. Graduate Texts in Mathematics, vol. 131, 2nd edn. Springer, New York (2001)

    Google Scholar 

  56. Laudone, R.P.: The spin-Brauer diagram algebra. J. Algebraic Combin. 50, 191–224 (2019). arXiv:1704.00111v3

    MathSciNet  MATH  Google Scholar 

  57. Lehrer, G., Zhang, R.: The second fundamental theorem of invariant theory for the orthogonal group. Ann. Math. 176(3), 2031–2054 (2012). arXiv:1102.3221v1

    MathSciNet  MATH  Google Scholar 

  58. Lehrer, G.I., Zhang, R.B.: The Brauer category and invariant theory. J. Eur. Math. Soc. 17(9), 2311–2351 (2015). arXiv:1207.5889v1

    MathSciNet  MATH  Google Scholar 

  59. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford Mathematical Monographs, Oxford (1995)

    MATH  Google Scholar 

  60. Martin, P.: Temperley–Lieb algebras for nonplanar statistical mechanics-the partition algebra construction. J. Knot Theory Ramifications 3(1), 51–82 (1994)

    MathSciNet  MATH  Google Scholar 

  61. Martin, P.: On diagram categories, representation theory and statistical mechanics. Noncommutative rings, group rings, diagram algebras and their applications. Contemp. Math. 456, 99–136 (2008)

    Google Scholar 

  62. Martin, P.: The decomposition matrices of the Brauer algebra over the complex field. Trans. Am. Math. Soc. 367, 1797–1825 (2015). arXiv:0908.1500v1

    MathSciNet  MATH  Google Scholar 

  63. Martin, P.P., Woodcock, D.: On the structure of the blob algebra. J. Algebra 225(2), 957–988 (2000)

    MathSciNet  MATH  Google Scholar 

  64. Moon, D.: Tensor product representations of the Lie superalgebra \(\mathfrak{P} (n)\) and their centralizers. Commun. Algebra 31(5), 2095–2140 (2003)

    MathSciNet  MATH  Google Scholar 

  65. Nagpal, R., Sam, S.V., Snowden, A.: Noetherianity of some degree two twisted commutative algebras. Selecta Math. (N.S.) 22(2), 913–937 (2016)

    MathSciNet  MATH  Google Scholar 

  66. Nagpal, R., Sam, S.V., Snowden, A.: Noetherianity of some degree two twisted skew-commutative algebras. Selecta Math. (N.S.) 25(1) (2019). arXiv:1610.01078v1

  67. Nagpal, R., Sam, S.V., Snowden, A.: On the geometry and representation theory of isomeric matrices. Algebra Number Theory (to appear). arXiv:2101.10422v2

  68. Putman, A., Sam, S.V.: Representation stability and finite linear groups. Duke Math. J. 166(13), 2521–2598 (2017). arXiv:1408.3694v3

    MathSciNet  MATH  Google Scholar 

  69. Rui, H.: A criterion on the semisimple Brauer algebras. J. Combin. Theory Ser. A 111(1), 78–88 (2005)

    MathSciNet  MATH  Google Scholar 

  70. Rui, H., Song, L.: Representations of Brauer category and categorification. J. Algebra 557, 1–36 (2020)

    MathSciNet  MATH  Google Scholar 

  71. Snowden, A.: Syzygies of Segre embeddings and \(\Delta \)-modules. Duke Math. J. 162(2), 225–277 (2013). arXiv:1006.5248v4

    MathSciNet  MATH  Google Scholar 

  72. Snowden, A.: The spectrum of a twisted commutative algebra. arXiv:2002.01152v1

  73. Sullivan, J.B.: Simply connected groups, the hyperalgebra, and Verma’s conjecture. Am. J. Math. 100(5), 1015–1019 (1978)

    MathSciNet  MATH  Google Scholar 

  74. Sam, S.V., Snowden, A.: Introduction to twisted commutative algebras. arXiv:1209.5122v1

  75. Sam, S.V., Snowden, A.: Stability patterns in representation theory. Forum Math. Sigma 3, e11-108 (2015). arXiv:1302.5859v2

    MathSciNet  MATH  Google Scholar 

  76. Sam, S.V., Snowden, A.: Gröbner methods for representations of combinatorial categories. J. Am. Math. Soc. 30, 159–203 (2017). arXiv:1409.1670v3

    MATH  Google Scholar 

  77. Sam, S.V., Snowden, A.: Infinite rank spinor and oscillator representations. J. Comb. Algebra 1(2), 145–183 (2017). arXiv:1604.06368v2

    MathSciNet  MATH  Google Scholar 

  78. Sam, S.V., Snowden, A.: \(\mathbf{Sp} \)-equivariant modules over polynomial rings in infinitely many variables. Trans. Am. Math. Soc. 375, 1671–1701 (2022). arXiv:2002.03243v2

    MathSciNet  MATH  Google Scholar 

  79. Sam, S.V., Snowden, A.: Noetherianity of noncrossing partition algebras. (in preparation)

  80. Sam, S.V., Snowden, A.: The representation theory of Brauer categories II: curried algebra. (in preparation)

  81. Sam, S.V., Snowden, A.: The representation theory of Brauer categories III: category \(\cal{O}\). (in preparation)

  82. Sam, S.V., Snowden, A.: The representation theory of Brauer categories IV: supergroups. (in preparation)

  83. Sam, S.V., Snowden, A.: The representation theory of Brauer categories V: Deligne categories. (in preparation)

  84. Temperley, H.N.V., Lieb, E.H.: Relations between ‘percolation’ and ‘colouring’ problems and other graph-theoretical problems associated with regular planar lattices: some exact results for the ‘percolation’ problem. Proc. Roy. Soc. Lond. A 322, 251–280 (1971)

    MathSciNet  MATH  Google Scholar 

  85. Vladimir, G.T.: Operator invariants of tangles, and R-matrices. Izv. Math. 35(2), 411–444 (1990)

    MathSciNet  MATH  Google Scholar 

  86. Wenzl, H.: On the structure of Brauer’s centralizer algebra. Ann. Math. 128(1), 173–193 (1988)

    MathSciNet  MATH  Google Scholar 

  87. Westbury, B.: Semi-planar partition monoid/algebra. URL (version: 2013-03-28): https://mathoverflow.net/q/125762

  88. Wiltshire-Gordon, J.D.: Uniformly presented vector spaces. arXiv:1406.0786v1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven V Sam.

Ethics declarations

Conflicts of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Data sharing

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Additional information

Communicated by Henning Krause.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

SS was supported by NSF Grant DMS-1812462. AS was supported by NSF Grants DMS-1453893.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sam, S.V., Snowden, A. The Representation Theory of Brauer Categories I: Triangular Categories. Appl Categor Struct 30, 1203–1256 (2022). https://doi.org/10.1007/s10485-022-09689-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-022-09689-7

Keywords

Navigation