Skip to main content
Log in

Quasi-static and dynamical analyses of a thermoviscoelastic Timoshenko beam using the differential quadrature method

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The quasi-static and dynamic responses of a thermoviscoelastic Timoshenko beam subject to thermal loads are analyzed. First, based on the small geometric deformation assumption and Boltzmann constitutive relation, the governing equations for the beam are presented. Second, an extended differential quadrature method (DQM) in the spatial domain and a differential method in the temporal domain are combined to transform the integro-partial-differential governing equations into the ordinary differential equations. Third, the accuracy of the present discrete method is verified by elastic/viscoelastic examples, and the effects of thermal load parameters, material and geometrical parameters on the quasi-static and dynamic responses of the beam are discussed. Numerical results show that the thermal function parameter has a great effect on quasi-static and dynamic responses of the beam. Compared with the thermal relaxation time, the initial vibrational responses of the beam are more sensitive to the mechanical relaxation time of the thermoviscoelastic material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AMIRIAN, B., HOSSEINI-ARA, R., and MOOSAVI, H. Surface and thermal effects on vibration of embedded alumina nanobeams based on novel Timoshenko beam model. Applied Mathematics and Mechanics (English Edition), 35, 875–886 (2014) https://doi.org/10.1007/s10483-014-1835-9

    Article  MathSciNet  Google Scholar 

  2. ZOCHER, M. A., GROVES, S. E., and ALLEN, D. H. A three-dimensional finite element formu-lation for thermoviscoelastic orthotropic media. International Journal for Numerical Methods in Engineering, 40, 2267–2288 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. ARAKI, W., ADACHI, T., and YAMAJI, A. Thermal stress analysis of thermoviscoelastic hollow cylinder with temperature-dependent thermal properties. Journal of Thermal Stresses, 28, 29–46 (2005)

    Article  Google Scholar 

  4. ZHANG, N. H. and XING, J. J. Vibration analysis of linear coupled thermoviscoelastic thin plates by a variational approach. International Journal of Solids and Structures, 45, 2583–2597 (2008)

    Article  MATH  Google Scholar 

  5. EZZAT, M. A., EL-KARAMANY, A. S., and EL-BARY, A. A. On thermo-viscoelasticity with variable thermal conductivity and fractional-order heat transfer. International Journal of Ther-mophysics, 36, 1–14 (2015)

    Article  Google Scholar 

  6. CHEN, L. Q. and CHENG, C. J. Dynamical behavior of nonlinear viscoelastic beams. Applied Mathematics and Mechanics (English Edition), 21, 995–1001 (2000) https://doi.org/10.1007/BF-02459308

    Article  MATH  Google Scholar 

  7. MANOACH, E. and RIBEIRO, P. Coupled, thermoelastic, large amplitude vibrations of Timo-shenko beams. International Journal of Mechanical Sciences, 46, 1589–1606 (2004)

    Article  MATH  Google Scholar 

  8. PARAYIL, D. V., KULKARNI, S. S., and PAWASKAR, D. N. Analytical and numerical solutions for thick beams with thermoelastic damping. International Journal of Mechanical Sciences, 94-95, 10–19 (2015)

    Article  Google Scholar 

  9. DARBAN, H. and MASSABO, R. Thermo-elastic solutions for multilayered wide plates and beams with interfacial imperfections through the transfer matrix method. Meccanica, 53, 553–571 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. BERTI, A., RIVERA, J. E. M., and NASO, M. G. A contact problem for a thermoelastic Timo-shenko beam. Zeitschrift f¨ur Angewandte Mathematik und Physik, 66, 1969–1986 (2015)

    Article  MATH  Google Scholar 

  11. YANG, X. D. and ZHANG, W. Nonlinear dynamics of axially moving beam with coupled longitudinal-transversal vibrations. Nonlinear Dynamics, 78, 2547–2556 (2014)

    Article  Google Scholar 

  12. CHEN, L. Q. and DING, H. Steady-state transverse response in coupled planar vibration of axially moving viscoelastic beams. Journal of Vibration and Acoustics, 132, 011009 (2010)

    Article  Google Scholar 

  13. IESAN, D. First-strain gradient theory of thermoviscoelasticity. Journal of Thermal Stresses, 38, 701–715 (2015)

    Article  Google Scholar 

  14. IESAN, D. On the nonlinear theory of thermoviscoelastic materials with voids. Journal of Elas-ticity, 128, 1–16 (2016)

    MathSciNet  MATH  Google Scholar 

  15. BERNARDI, C. and COPETTI, M. I. M. Discretization of a nonlinear dynamic thermoviscoelastic Timoshenko beam model. Zeitschrift f¨ur Angewandte Mathematik und Mechanik, 97, 532–549 (2017)

    Article  MathSciNet  Google Scholar 

  16. FU, Y. M. and TAO, C. Nonlinear dynamic responses of viscoelastic fiber-metal-laminated beams under the thermal shock. Journal of Engineering Mathematics, 98, 113–128 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. CHEN, L. Q., DING, H., and LIM, C. W. Principal parametric resonance of axially accelerat-ing viscoelastic beams: multi-scale analysis and differential quadrature verification. Shock and Vibration, 19, 527–543 (2012)

    Article  Google Scholar 

  18. EFTEKHARI, S. A. A differential quadrature procedure for linear and nonlinear steady state vibrations of infinite beams traversed by a moving point load. Meccanica, 51, 1–18 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. SAVIZ, M. R. Electro-elasto-dynamic analysis of functionally graded cylindrical shell with piezo-electric rings using differential quadrature method. Acta Mechanica, 228, 1645–1670 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. ZHANG, R., LIANG, X., and SHEN, S. A Timoshenko dielectric beam model with flexoelectric effect. Meccanica, 51, 1181–1188 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. WANG, X. and BERT, C. W. A new approach in applying differential quadrature to static and free vibrational analyses of beams and plates. Journal of Sound and Vibration, 162, 566–572 (1993)

    Article  MATH  Google Scholar 

  22. LI, J. J. and CHENG, C. J. Differential quadrature method for analyzing nonlinear dynamic characteristics of viscoelastic plates with shear effects. Nonlinear Dynamics, 61, 57–70 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. AMOOZGAR, M. R. and SHAHVERDI, H. Analysis of nonlinear fully intrinsic equations of geometrically exact beams using generalized differential quadrature method. Acta Mechanica, 227, 1265–1277 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. KIENDL, J., AURICCHIO, F., HUGHES, T. J. R., and REALI, A. Single-variable formulations and isogeometric discretizations for shear deformable beams. Computer Methods in Applied Me-chanics and Engineering, 284, 988–1004 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. TIMOSHENKO, S. and GERE, J. Mechanics of Materials, Van Nostrand Reinhold Company, New York, 315–426 (1972)

    Google Scholar 

  26. CHEN, T. M. The hybrid Laplace transform/finite element method applied to the quasi-static and dynamic analysis of viscoelastic Timoshenko beams. International Journal for Numerical Methods in Engineering, 38, 509–522 (1995)

    Article  MATH  Google Scholar 

  27. YU, O. Y., JIANG, Y., and ZHOU, L. Analytical solution of bending of viscoelastic timber beam reinforced with fibre reinforcement polymer (FRP) sheet (in Chinese). Journal of Shanghai University (Natural Science), 22, 609–622 (2016)

    Google Scholar 

  28. LI, S. R. and ZHOU, Y. H. Geometrically nonlinear analysis of Timoshenko beams under ther-momechanical loadings. Journal of Thermal Stresses, 26, 691–700 (2003)

    Article  Google Scholar 

  29. ABOUDI, J., PINDERA, M. J., and ARNOLD, S. M. Linear thermoelastic higher-order theory for periodic multiphase materials. Journal of Applied Mechanics, 68, 697–707 (2001)

    Article  MATH  Google Scholar 

  30. UYGUNOGLU, T. and TOPCU, I. B. Thermal expansion of self-consolidating normal and lightweight aggregate concrete at elevated temperature. Construction and Building Materials, 23, 3063–3069 (2009)

    Article  Google Scholar 

  31. CHIBA, R. Stochastic thermal stresses in an FGM annular disc of variable thickness with spatially random heat transfer coefficients. Meccanica, 44, 159–176 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. SUN, Y. X., FANG, D. N., and SOH, A. K. Thermoelastic damping in micro-beam resonators. International Journal of Solids and Structures, 43, 3213–3229 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nenghui Zhang.

Additional information

Citation: LYU, Q., LI, J. J., and ZHANG, N. H. Quasi-static and dynamical analyses of a thermoviscoelastic Timoshenko beam using the differential quadrature method. Applied Mathematics and Mechanics (English Edition), 40(4), 549–562 (2019) https://doi.org/10.1007/s10483-019-2470-8

Project supported by the National Natural Science Foundation of China (Nos. 11772182 and 90816001)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, Q., Li, J. & Zhang, N. Quasi-static and dynamical analyses of a thermoviscoelastic Timoshenko beam using the differential quadrature method. Appl. Math. Mech.-Engl. Ed. 40, 549–562 (2019). https://doi.org/10.1007/s10483-019-2470-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-019-2470-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation