Skip to main content
Log in

Pressure-based and potential-based mixed Ritz-differential quadrature formulations for free and forced vibration of Timoshenko beams in contact with fluid

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Two general mixed formulations, i.e., the pressure-based mixed Ritz-differential quadrature method and the potential-based mixed Ritz-differential quadrature method, are proposed to study the free and forced vibration of Timoshenko beams in contact with fluid. The proposed mixed methods use the Ritz method and the differential quadrature method to discretize the governing partial differential equation of motion of the beam and that of the fluid, respectively. As a result, application of proposed mixed methods gives two sets of ordinary differential equations; one belongs to the structure (beam) and the other to the fluid. These two sets of ordinary differential equations are coupled with each other and can be expressed as a system of ordinary differential equations which can be further discretized in time using various time integration schemes. The proposed mixed formulations, in general, enjoy from analytical characteristics of the Ritz method and simplicity of the differential quadrature method. Their accuracy, reliability and efficiency are shown through numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Westergaard HM (1933) Water pressures on dams during earthquakes. ASCE Trans 98:418–433

    Google Scholar 

  2. Chopra AK (1967) Hydrodynamic pressures on dams during earthquakes. ASCE J Eng Mech 93(6):205–223

    Google Scholar 

  3. Chopra AK (1968) Earthquake behavior of reservoir-dam systems. ASCE J Eng Mech 94(6):1475–1500

    Google Scholar 

  4. Jones A (1970) Vibration of beams immersed in a liquid. Exp Mech 10(2):84–88

    Article  Google Scholar 

  5. Lee GC, Tsai CS (1991) Time domain analysis of dam-reservoir system, I: exact solution. ASCE J Eng Mech 117:1990–2006

    Article  Google Scholar 

  6. Lee GC, Tsai CS (1991) Time domain analysis of dam-reservoir system, II: substructure method. ASCE J Eng Mech 117:2007–2026

    Article  Google Scholar 

  7. Xing JT, Price WG, Pomfret MJ, Yam LH (1997) Natural vibration of a beam–water interaction system. J Sound Vib 199(3):491–512

    Article  ADS  Google Scholar 

  8. Cheng CC, Wang JK (1998) Structural acoustic response reduction of a fluid-loaded beam using unequally-spaced concentrated masses. Appl Acoust 54(4):291–303

    Article  Google Scholar 

  9. Wang XQ, So RMC, Liu Y (2001) Flow-induced vibration of an Euler–Bernoulli beam. J Sound Vib 243(2):241–268

    Article  ADS  Google Scholar 

  10. Gorman DG, Trendafilova I, Mulholland AJ, Horáček J (2007) Analytical modelling and extraction of the modal behavior of a cantilever beam in fluid interaction. J Sound Vib 308:231–245

    Article  ADS  Google Scholar 

  11. Miquel B, Bouaanani N (2011) Practical dynamic analysis of structures laterally vibrating in contact with water. Comput Struct 89(23–24):2195–2210

    Article  Google Scholar 

  12. Kwon YW, Priest EM, Gordis JH (2013) Investigation of vibrational characteristics of composite beams with fluid–structure interaction. Compos Struct 105:269–278

    Article  Google Scholar 

  13. Faria CT, Inman DJ (2014) Modeling energy transport in a cantilevered Euler–Bernoulli beam actively vibrating in Newtonian fluid. Mech Sys Sign Proc 45:317–329

    Article  Google Scholar 

  14. Ni Q, Li M, Tang M, Wang L (2014) Free vibration and stability of a cantilever beam attached to an axially moving base immersed in fluid. J Sound Vib 333:2543–2555

    Article  ADS  Google Scholar 

  15. Eftekhari SA, Jafari AA (2014) A mixed modal-differential quadrature method for free and forced vibration of beams in contact with fluid. Meccanica 49:535–564

    Article  MATH  MathSciNet  Google Scholar 

  16. Zhao S, Xing JT, Price WG (2002) Natural vibration of a flexible beam–water coupled system with a concentrated mass attached at the free end of the beam. Proc Inst Mech Eng M, J Eng Marit Environ 216(2):145–154

    Article  Google Scholar 

  17. Fleischer D, Park S-K (2004) Plane hydroelastic beam vibrations due to uniformly moving one axle vehicle. J Sound Vib 273:585–606

    Article  ADS  Google Scholar 

  18. Ryuji E, Nobuyoshi T, Yusuke K, Takeshi G (2006) Eigen-value analysis of elastic beam–fluid coupled system using BEM–FEM combined method. J Struct Eng B 52:133–138

    Google Scholar 

  19. Gosselin F, Païdoussis MP, Misra AK (2007) Stability of a deploying/extruding beam in dense fluid. J Sound Vib 299:123–142

    Article  ADS  Google Scholar 

  20. Xing JT (2007) Natural vibration of two-dimensional slender structure–water interaction systems subject to Sommerfeld radiation condition. J Sound Vib 308:67–79

    Article  ADS  Google Scholar 

  21. Jin JZ, Xing JT (2007) Transient dynamic analysis of a floating beam–water interaction system excited by the impact of a landing beam. J Sound Vib 303:371–390

    Article  ADS  Google Scholar 

  22. Lin W, Qiao N (2008) Vibration and stability of an axially moving beam immersed in fluid. Int J Solid Struct 45(5):1445–1457

    Article  MATH  Google Scholar 

  23. Rezazadeh G, Fathalilou M, Shabani R, Tarverdilo S, Talebian S (2009) Dynamic characteristics and forced response of an electrostatically-actuated microbeam subjected to fluid loading. Microsyst Technol 15:1355–1363

    Article  Google Scholar 

  24. Qiu L-C (2009) Modeling and simulation of transient responses of a flexible beam floating in finite depth water under moving loads. Appl Math Model 33:1620–1632

    Article  MATH  MathSciNet  Google Scholar 

  25. Shabani R, Hatami H, Golzar FG, Tariverdilo S, Rezazadeh G (2013) Coupled vibration of a cantilever micro-beam submerged in a bounded incompressible fluid domain. Acta Mech 224(4):841–850

    Article  MATH  MathSciNet  Google Scholar 

  26. Sharafkhani N, Shabani R, Tariverdilo S, Rezazadeh G (2013) Stability analysis and transient response of electrostatically actuated microbeam interacting with bounded compressible fluids. ASME J Appl Mech 80(1):011024

    Article  Google Scholar 

  27. Eftekhari SA, Jafari AA (2014) A variational formulation for vibration problem of beams in contact with a bounded compressible fluid and subjected to a travelling mass. Arab J Sci Eng 39:5153–5170

    Article  Google Scholar 

  28. Bouaanani N, Miquel B (2015) Efficient modal dynamic analysis of flexible beam–fluid systems. Appl Math Model 39(1):99–116

    Article  MathSciNet  Google Scholar 

  29. Olson LG, Bathe K-J (1983) A study of displacement-based fluid finite elements for calculating frequencies of fluid and fluid–structure systems. Nucl Eng Des 76:137–151

    Article  Google Scholar 

  30. Bathe K-J, Nitikitpaiboon C, Wang X (1995) A mixed displacement-based finite element formulation for acoustic fluid–structure interaction. Comput Struct 56(2/3):225–237

    Article  MATH  MathSciNet  Google Scholar 

  31. Rao SS (2007) Vibration of continuous systems. Wiley, Hoboken

    Google Scholar 

  32. Bellman RE, Casti J (1971) Differential quadrature and long term integrations. J Math Anal Appl 34:235–238

    Article  MATH  MathSciNet  Google Scholar 

  33. Bert CW, Malik M (1996) Differential quadrature method in computational mechanics: a review. ASME Appl Mech Rev 49:1–28

    Article  Google Scholar 

  34. Quan JR, Chang CT (1989) New insights in solving distributed system equations by the quadrature methods, part I: analysis. Comput Chem Eng 13:779–788

    Article  Google Scholar 

  35. Shu C (2000) Differential quadrature and its application in engineering. Springer, New York

    Book  MATH  Google Scholar 

  36. Khalili SMR, Jafari AA, Eftekhari SA (2010) A mixed Ritz-DQ method for forced vibration of functionally graded beams carrying moving loads. Compos Struct 92(10):2497–2511

    Article  Google Scholar 

  37. Jafari AA, Eftekhari SA (2011) An efficient mixed methodology for free vibration and buckling analysis of orthotropic rectangular plates. Appl Math Comput 218:2672–2694

    Article  MathSciNet  Google Scholar 

  38. Eftekhari SA, Jafari AA (2013) A simple and accurate mixed FE-DQ formulation for free vibration of rectangular and skew Mindlin plates with general boundary conditions. Meccanica 48:1139–1160

    Article  MATH  MathSciNet  Google Scholar 

  39. Dahlquist G, Björck Å (2008) Numerical methods in scientific computing, vol I. SIAM, Philadelphia, pp 521–607

    Book  MATH  Google Scholar 

  40. Bhat RB (1985) Natural frequencies of rectangular plates using characteristic orthogonal polynomial in Rayleigh–Ritz method. J Sound Vib 102(4):493–499

    Article  ADS  Google Scholar 

  41. Dickinson SM, Di Blasio A (1986) On the use of orthogonal polynomials in the Rayleigh–Ritz method for the study of the flexural vibration and buckling of isotropic and orthotropic rectangular plates. J Sound Vib 108(1):51–62

    Article  ADS  MATH  Google Scholar 

  42. Eftekhari SA, Jafari AA (2013) A simple and accurate Ritz formulation for free vibration of thick rectangular and skew plates with general boundary conditions. Acta Mech 224:193–209

    Article  MATH  MathSciNet  Google Scholar 

  43. Bathe KJ, Wilson EL (1976) Numerical methods in finite element analysis. Prentic-Hall, Englewood Cliffs

    MATH  Google Scholar 

  44. Myint-U T (1980) Partial differential equations of mathematical physics, 2nd edn. North-Holland, New York

    MATH  Google Scholar 

  45. Myint-U T, Debnath L (2007) Linear partial differential equations for scientists and engineers, 4th edn. Birkhäuser, Boston

    MATH  Google Scholar 

  46. Meirovitch L (1967) Analytical methods in vibrations. Macmillan Company, New York

    MATH  Google Scholar 

  47. Fryba L (1999) Vibration of solids and structures under moving loads, 3rd edn. Thomas Telford Ltd, London

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Eftekhari.

Appendix: Explicit analytical solution for natural frequencies of simply supported Timoshenko beams in contact with a bounded incompressible fluid with Dirichlet boundary conditions

Appendix: Explicit analytical solution for natural frequencies of simply supported Timoshenko beams in contact with a bounded incompressible fluid with Dirichlet boundary conditions

Consider the beam–fluid system shown in Fig. 1. When pressure-based formulation is adopted, the governing partial differential equations for forced vibration of the system are given in Eqs. (1)–(3). In the case of free vibrations, the dynamic lateral load is equal to zero. The solutions of harmonic vibration of the system can then be expressed as

$$ w(x,t) = \tilde{w}(x)e^{i\omega t} ,\quad \Uppsi (x,t) = \tilde{\Uppsi }(x)e^{i\omega t} ,\quad p(x,z,t) = \tilde{p}(x,z)e^{i\omega t} $$
(102)

Ignoring the compressibility of the fluid and substituting Eq. (102) into Eqs. (1)–(3), we obtain the following dimensionless governing partial differential equations for free vibration of the beam–fluid system

$$ \eta_{1} \frac{\partial }{\partial X}\left( {\frac{{\partial \tilde{w}}}{\partial X} - \tilde{\Uppsi }} \right) + \eta_{2} \omega^{2} \tilde{w} = \eta_{3} \tilde{p}(X,Z = 0) $$
(103)
$$ \eta_{4} \frac{{\partial^{2} \tilde{\Uppsi }}}{{\partial X^{2} }} + \eta_{5} \left( {\frac{{\partial \tilde{w}}}{\partial X} - \tilde{\Uppsi }} \right) + \eta_{2} \omega^{2} \tilde{\Uppsi } = 0 $$
(104)
$$ \frac{{\partial^{2} \tilde{p}}}{{\partial X^{2} }} + \eta_{6}^{2} \frac{{\partial^{2} \tilde{p}}}{{\partial Z^{2} }} = 0 $$
(105)

where

$$ X=\frac{x}{L},\quad Z = \frac{z}{H}, \quad \eta_{1} = \frac{k}{2(1 + \mu )}\left( \frac{L}{r} \right)^{2} , \quad \eta_{2} = \frac{{\rho_{s} AL^{4} }}{EI}, \quad \eta_{3} = \frac{{bL^{4}}}{EI}, \quad \eta_{4} = \left( \frac{L}{r} \right)^{2}, \quad \eta_{5} = \frac{k}{2(1 + \mu )}\left( \frac{L}{r} \right)^{4} = \eta_{1} \eta_{4} ,\quad \eta_{6} = \frac{L}{H},\quad r = {\sqrt{ \frac{I}{A}}} = \frac{h}{{\sqrt{12}}} $$
(106)

where r being the radius of gyration of the beam cross-section.

According to boundary conditions of the problem, the normal mode functions of the beam–fluid system are chosen as [31, 44, 45]

$$ \tilde{w}_{n} (X) = \hat{w}_{n} \sin n\pi X,\quad \tilde{\Uppsi }_{n} (X) = \hat{\Uppsi }_{n} \cos n\pi X $$
(107)
$$ \tilde{p}_{n} (x,z) = \hat{p}_{n} \sin n\pi X\sinh n\pi \vartheta (1 - Z),\quad \vartheta = \frac{1}{{\eta_{6} }} = \frac{H}{L} $$
(108)

where \( \tilde{w}_{n} \), \( \tilde{\Uppsi }_{n} \) and \( \tilde{p}_{n} \) are constants. Imposing the beam–fluid interface boundary condition [see Eq. (7)], we obtain

$$ \hat{p}_{n} = - \frac{{\rho_{f} H\hat{w}_{n} }}{n\pi \vartheta \cosh n\pi \vartheta }\omega_{n}^{2} $$
(109)

Upon introducing Eq. (109) to Eq. (108), the hydrodynamic pressure on the beam–fluid interface can be expressed as

$$ \tilde{p}_{n} (x,0) = - \hat{w}_{n} \bar{p}_{n} \omega_{n}^{2} \sin n\pi X $$
(110)

where

$$ \bar{p}_{n} = \frac{{\rho_{f} H}}{n\pi \vartheta }\tanh n\pi \vartheta $$
(111)

Substituting Eqs. (107) and (110) into Eqs. (103) and (104) gives

$$ \left[ {\begin{array}{*{20}c} {n^{2} \pi^{2} \eta_{1} - \eta_{7} \omega_{n}^{2} } & { - n\pi \eta_{1} } \\ {n\pi \eta_{5} } & {\eta_{2} \omega_{n}^{2} - n^{2} \pi^{2} \eta_{4} - \eta_{5} } \\ \end{array} } \right]\left\{ {\begin{array}{*{20}c} {\hat{w}_{n} } \\ {\hat{\Uppsi }_{n} } \\ \end{array} } \right\} = \left\{ {\begin{array}{*{20}c} 0 \\ 0 \\ \end{array} } \right\},\quad \eta_{7} = \eta_{2} + \eta_{3} \bar{p}_{n} $$
(112)

Setting the determinant of the matrix in Eq. (112) to zero gives the characteristic equation of the fluid-loaded Timoshenko beam as

$$ \eta_{2} \eta_{7} \omega_{n}^{4} - (\eta_{5} \eta_{7} + n^{2} \pi^{2} \eta_{4} \eta_{7} + n^{2} \pi^{2} \eta_{1} \eta_{2} )\omega_{n}^{2} + n^{4} \pi^{4} \eta_{1} \eta_{4} = 0 $$
(113)

Equation (113) can also be rewritten as

$$ \eta_{8} \tilde{\omega }_{n}^{2} - ((\eta_{5} + n^{2} \pi^{2} \eta_{4} )\eta_{8} + n^{2} \pi^{2} \eta_{1} )\tilde{\omega }_{n} + n^{4} \pi^{4} \eta_{1} \eta_{4} = 0 $$
(114)

where

$$ \eta_{8} = 1 + \frac{\lambda }{n\pi }\tanh n\pi \vartheta ,\quad \lambda = \frac{{\rho_{f} L}}{{\rho_{s} h}},\quad \tilde{\omega }_{n} = \eta_{2} \omega_{n}^{2} = \omega_{n}^{2} \frac{{\rho_{s} AL^{4} }}{EI} $$
(115)

Equation (114) is a quadratic equation in \( \tilde{\omega }_{n} \) and gives two values of \( \tilde{\omega }_{n} \) for any value of n. The roots of this equation are given by

$$ \tilde{\omega }_{{n_{1} ,n_{2} }} = \frac{1}{2\alpha }( - \beta \pm \sqrt {\beta^{2} - 4\alpha \gamma } ) $$
(116)

where

$$ \alpha = \eta_{8} ,\quad \beta = - ((\eta_{5} + n^{2} \pi^{2} \eta_{4} )\eta_{8} + n^{2} \pi^{2} \eta_{1} ),\quad \gamma = n^{4} \pi^{4} \eta_{1} \eta_{4} $$
(117)

It is noted that the smaller value of \( \tilde{\omega }_{n} \) corresponds to the bending deformation mode, while the larger value corresponds to the shear deformation mode.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eftekhari, S.A. Pressure-based and potential-based mixed Ritz-differential quadrature formulations for free and forced vibration of Timoshenko beams in contact with fluid. Meccanica 51, 179–210 (2016). https://doi.org/10.1007/s11012-015-0198-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0198-9

Keywords

Navigation