Skip to main content
Log in

Weakly nonlinear stability analysis of triple diffusive convection in a Maxwell fluid saturated porous layer

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The weakly nonlinear stability of the triple diffusive convection in a Maxwell fluid saturated porous layer is investigated. In some cases, disconnected oscillatory neutral curves are found to exist, indicating that three critical thermal Darcy-Rayleigh numbers are required to specify the linear instability criteria. However, another distinguishing feature predicted from that of Newtonian fluids is the impossibility of quasi-periodic bifurcation from the rest state. Besides, the co-dimensional two bifurcation points are located in the Darcy-Prandtl number and the stress relaxation parameter plane. It is observed that the value of the stress relaxation parameter defining the crossover between stationary and oscillatory bifurcations decreases when the Darcy-Prandtl number increases. A cubic Landau equation is derived based on the weakly nonlinear stability analysis. It is found that the bifurcating oscillatory solution is either supercritical or subcritical, depending on the choice of the physical parameters. Heat and mass transfers are estimated in terms of time and area-averaged Nusselt numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

d :

depth of the porous layer

Pr D :

Darcy-Prandtl number

g :

gravitational acceleration

q :

velocity vector

K :

permeability of the porous medium

R Si :

solute Darcy-Rayleigh number of the ith component

\(\hat k\) :

unit vector in the vertical direction

R T :

thermal Darcy-Rayleigh number

M :

ratio of heat capacities

t :

time

p :

pressure

x :

y, z, space coordinates.

α :

horizontal wave number

Λ1 :

stress relaxation parameter

α T :

thermal expansion coefficient

μ :

dynamic viscosity

α Si :

solute analog of αT (i = 1, 2)

ν :

kinematic viscosity

ϵ :

porosity

ρ :

fluid density

κ T :

thermal diffusivity

σ :

growth term

κ Si :

solute diffusivity (i = 1, 2)

τ i :

ratio of diffusivity (i = 1, 2)

λ1 :

stress relaxation time

ψ :

stream function.

b:

basic state

U:

upper boundary

L:

lower boundary

*:

dimensionless variable.

References

  1. Nield, D. A. and Bejan, A. Convection in Porous Media, Springer International Publishing, Berlin (2017)

    Book  MATH  Google Scholar 

  2. Makinde, O. D. and Mhone, P. Y. On temporal stability analysis for hydromagnetic flow in a channel filled with a saturated porous medium. Flow, Turbulence and Combustion, 83, 21–32 (2009)

    Article  MATH  Google Scholar 

  3. Makinde, O. D. Thermal stability of a reactive viscous flow through a porous-saturated channel with convective boundary conditions. Applied Thermal Engineering, 29, 1773–1777 (2009)

    Article  Google Scholar 

  4. Makinde, O. D. Magneto-hydromagnetic stability of plane-Poiseuille flow using multi-Deck asymptotic technique. Mathematical and Computer Modelling, 37, 251–259 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Shenoy, A. V. Non-Newtonian fluid heat transfer in porous media. Advances in Heat Transfer, 24, 101–190 (1994)

    Article  Google Scholar 

  6. Khaled, A. R. A. and Vafai, K. The role of porous media in modeling flow and heat transfer in biological tissues. International Journal of Heat and Mass Transfer, 46, 4989–5003 (2003)

    Article  MATH  Google Scholar 

  7. Pascal, H. and Pascal, F. On viscoelastic effects in non-Newtonian steady flows through porous media. Transport in Porous Media, 4, 17–35 (1989)

    Article  Google Scholar 

  8. Pilitsis, S. and Beris, A. N. Calculations of steady-state viscoelastic flow in an undulating tube. Journal of Non-Newtonian Fluid Mechanics, 31, 231–287 (1989)

    Article  MATH  Google Scholar 

  9. Rudraiah, N., Kaloni, P. N., and Radhadevi, P. V. Oscillatory convection in a viscoelastic fluid through a porous layer heated from below. Rheological Acta, 28, 48–53 (1989)

    Article  MATH  Google Scholar 

  10. Kim, M. C., Lee, S. B., Kim, S., and Chung, B. J. Thermal instability of viscoelastic fluids in porous media. International Journal of Heat and Mass Transfer, 46, 5065–5072 (2003)

    Article  MATH  Google Scholar 

  11. Yoon, D. Y., Kim, M. C., and Choi, C. K. The onset of oscillatory convection in a horizontal porous layer saturated with viscoelastic liquid. Transport in Porous Media, 55, 275–284 (2004)

    Article  Google Scholar 

  12. Shivakumara, I. S. and Sureshkumar, S. Convective instabilities in a viscoelastic-fluid-saturated porous medium with through flow. Journal of Geophysics and Engineering, 4, 104–115 (2007)

    Article  Google Scholar 

  13. Shivakumara, I. S., Malashetty, M. S., and Chavaraddi, K. B. Onset of convection in a viscoelastic-fluid-saturated sparsely packed porous layer using a thermal non equilibrium model. Canadian Journal of Physics, 84, 973–990 (2006)

    Article  Google Scholar 

  14. Malashetty, M. S., Shivakumara, I. S., Sridhar, K., and Mahantesh, S. Convective instability of Oldroyd-B fluid saturated porous layer heated from below using a thermal non-equilibrium mode. Transport in Porous Media, 64, 123–139 (2006)

    Article  MathSciNet  Google Scholar 

  15. Sheu, L. J., Tam, L. M., Chen, J. H., Chen, H. K., Lin, K. T., and Kang, Y. Chaotic convection of viscoelastic fluids in porous media. Chaos, Solitons and Fractals, 37, 113–124 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bertola, V. and Cafaro, E. Thermal instability of viscoelastic fluids in horizontal porous layers as initial problem. International Journal of Heat and Mass Transfer, 49, 4003–4012 (2006)

    Article  MATH  Google Scholar 

  17. Sheu, L. J., Chen, J. H., Chen, H. K., Tam, L. M., and Chao, Y. C. A unifed system describing dynamics of chaotic convection. Chaos, Solitons and Fractals, 41, 123–130 (2009)

    Article  MATH  Google Scholar 

  18. Liu, Y. and Guo, B. Coupling model for unsteady MHD flow of generalized Maxwell fluid with radiation thermal transform. Applied Mathematics and Mechanics (English Edition), 37(2), 137–150 (2016) DOI 10.1007/s10483-016-2021-8

    Article  MathSciNet  MATH  Google Scholar 

  19. Cao, L., Si, X., and Zheng, L. Convection of Maxwell fluid over stretching porous surface with heat source/sink in presence of nanoparticles: Lie group analysis. Applied Mathematics and Mechanics (English Edition), 37(4), 433–442 (2016) DOI 10.1007/s10483-016-2052-9

    Article  MathSciNet  Google Scholar 

  20. Mahanthesh, B., Gireesha, B. J., Shehzad, S. A., Abbasi, F. M., and Gorla, R. S. R. Nonlinear three-dimensional stretched flow of an Oldroyd-B fluid with convective condition, thermal radiation, and mixed convection. Applied Mathematics and Mechanics (English Edition), 38(7), 969–980 (2017) DOI 10.1007/s10483-017-2219-6

    Article  MathSciNet  MATH  Google Scholar 

  21. Straughan, B. Stability and Wave Motion in Porous Media, Springer, New York (2008)

    MATH  Google Scholar 

  22. Vafai, K. Handbook of Porous Media, Marcel Dekker, New York (2000)

    MATH  Google Scholar 

  23. Wang, S. and Tan, W. Stability analysis of soret-driven double-diffusive convection of Maxwell fluid in a porous medium. International Journal of Heat and Fluid Flow, 32, 88–94 (2011)

    Article  Google Scholar 

  24. Malashetty, M. S., Tan, W. C., and Swamy, M. The onset of double diffusive convection in a binary viscoelastic fluid-saturated anisotropic porous layer. Physics of Fluids, 21, 084101–084111 (2009)

    Article  MATH  Google Scholar 

  25. Awad, F. G., Sibanda, P., and Motsa, S. S. On the linear stability analysis of a Maxwell fluid with double-diffusive convection. Applied Mathematical Modeling, 34, 3509–3517 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Griffiths, R.W. The influence of a third diffusing component upon the onset of convection. Journal of Fluid Mechanics, 92, 659–670 (1979)

    Article  MATH  Google Scholar 

  27. Pearlstein, A. J., Harris, R. M., and Terrones, G. The onset of convective instability in a triply diffusive of fluid layer. Journal of Fluid Mechanics, 202, 443–465 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  28. Straughan, B. and Walker, D. W. Multi-component convection-diffusion and penetrative convection. Fluid Dynamics Research, 19, 77–89 (1997)

    Article  Google Scholar 

  29. Straughan, B. and Tracey, J. Multi-component convection-diffusion with internal heating or cooling. Acta Mechanica, 133, 219–239 (1999)

    Article  MATH  Google Scholar 

  30. Rudraiah, N. and Vortmeyer, D. Influence of permeability and of a third diffusing component upon the onset of convection in a porous medium. International Journal of Heat and Mass Transfer, 25, 457–464 (1982)

    Article  MATH  Google Scholar 

  31. Poulikakos, D. Effect of a third diffusing component on the onset of convection in a horizontal layer. Physics of Fluids, 28, 3172–3174 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tracey, J. Multi-component convection-diffusion in a porous medium. Continuum Mechanics and Thermodynamics, 8, 361–381 (1973)

    Article  MATH  Google Scholar 

  33. Rionero, S. Long-time behavior of multi-component fluid mixtures in porous media. International Journal of Engineering Science, 48, 1519–1633 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rionero, S. Triple diffusive convection in porous media. Acta Mechanica, 224, 447–458 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ghalambz, M., Moatter, F., Sheremet, M. A., and Pop, I. Triple-diffusive natural convection in a square porous cavity. Transport in Porous Media, 111, 59–79 (2016)

    Article  MathSciNet  Google Scholar 

  36. Zhao, M., Wang, S., and Zhang, Q. Onset of triply diffusive convection in a Maxwell fluid-saturated porous layer. Applied Mathematical Modeling, 38, 2345–2352 (2014)

    Article  MathSciNet  Google Scholar 

  37. Venezian, G. Effect of modulation on the onset of thermal convection. Journal of Fluid Mechanics, 35, 243–254 (1969)

    Article  MATH  Google Scholar 

  38. Malkus, W. V. R. and Veronis, G. Finite amplitude cellular convection. Journal of Fluid Mechanics, 4, 225–260 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  39. Drazin, P. G. and Reid, W. H. Hydrodynamic Stability, Cambridge University Press, New York (1981)

    MATH  Google Scholar 

Download references

Acknowledgements

One of the authors (K. R. RAGHUNATHA) wishes to thank the the Department of Science and Technology, New Delhi for granting him a fellowship under the Innovation in Science Pursuit for the Inspired Research (INSPIRE) Program (No. DST/INSPIRE Fellowship/[IF 150253]). The authors wish to thank the reviewers for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Shivakumara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raghunatha, K.R., Shivakumara, I.S. & Shankar, B.M. Weakly nonlinear stability analysis of triple diffusive convection in a Maxwell fluid saturated porous layer. Appl. Math. Mech.-Engl. Ed. 39, 153–168 (2018). https://doi.org/10.1007/s10483-018-2298-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-018-2298-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation