Skip to main content
Log in

Short-term impact of biochar amendments on eukaryotic communities in three different soils

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

This study determined the loading impacts of wood-based biochar on the eukaryotic community in three different soils (brown sandy loam—BSL, red loam—RL and a black clay loam—BCL) using a pot trial conducted over 10 months. Soil analysis and 18S rRNA gene sequencing performed using the Illumina MiSeq platform was carried out to evaluate the changes in eukaryotic community composition in relation to different added amounts of biochar. It was found that biochar addition had a negligible effect on diversity parameters in the brown sandy loam Kurosol (BSL) and red loam Dermosol (RL) soils. There were, however, significant changes in eukaryotic community composition of these biochar amended soils. These changes were most discernible in the lighter (low clay content) BSL soil for the fungal communities (F = 3.0106, p = 0.0003) present and also when total eukaryotes were considered (F = 2.3907, p = 0.0002). In this respect Glomeromycota seem to be slightly promoted in the lighter BSL soils, which might be due to increased soil porosity and soil chemical fertility. Clay rich BCL soil community structure correlated to a greater degree with soil chemistry influenced by biochar addition. The results showed that soil microeukaryotes were affected by short term carbon amendment, though to a limited extent. The limited effect of biochar loading rates on the soil microbiology could be due to the short incubation period, the lack of added fertiliser nutrients, and also the inherent stability of the soil eukaryotic community. The data suggested the impacts that were observed however included important plant symbiotic organisms. The results also imply biochar applications at different loading levels have differential effects on soil microeurokaryotes in relation to soil properties in particular clay content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abujabhah IS, Bound SA, Doyle R, Bowman JP (2016a) Effects of biochar and compost amendments on soil physico-chemical properties and the total community within a temperate agricultural soil. Appl Soil Ecol 98:243–253

    Article  Google Scholar 

  • Abujabhah IS, Doyle R, Bound SA, Bowman JP (2016b) The effect of biochar loading rates on soil fertility, soil biomass, potential nitrification, and soil community metabolic profiles in three different soils. J Soils Sed 16:2211–2222

    Article  CAS  Google Scholar 

  • Abujabhah IS, Doyle RB, Bound SA, Bowman JP (2017) Assessment of bacterial community composition, methanotrophic and nitrogen-cycling bacteria in three soils with different biochar application rates. J Soils Sed 18:148–158

    Article  CAS  Google Scholar 

  • Akhtar M, Malik A (2000) Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: a review. Bioresour Technol 74:35–47

    Article  CAS  Google Scholar 

  • Alden L, Demoling F, Bååth E (2001) Rapid method of determining factors limiting bacterial growth in soil. Appl Environ Microbiol 67:1830–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amaral-Zettler LA, McCliment EA, Ducklow HW, Huse SM (2009) A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PloS One 4:e6372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson MJ, Willis TJ (2003) Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84:511–525

    Article  Google Scholar 

  • Anderson MJ, Connell SD, Gillanders BM, Diebel CE, Blom WM, Saunders JE, Landers TJ (2005) Relationships between taxonomic resolution and spatial scales of multivariate variation. J Anim Ecol 74:636–646

    Article  Google Scholar 

  • Asai H et al (2009) Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Res 111:81–84

    Article  Google Scholar 

  • Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18. https://doi.org/10.1007/s11104-010-0464-5

    Article  CAS  Google Scholar 

  • Bahram M, Kohout P, Anslan S, Harend H, Abarenkov K, Tedersoo L (2016) Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment. ISME J 10(4):885–896

    Article  PubMed  Google Scholar 

  • Bai M et al (2013) Degradation kinetics of biochar from pyrolysis and hydrothermal carbonization in temperate soils. Plant Soil 372:375–387

    Article  CAS  Google Scholar 

  • Blankenberg D, Gordon A, Von Kuster G, Coraor N, Taylor J, Nekrutenko A (2010) Manipulation of FASTQ data with galaxy. Bioinformatics 26:1783–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouzaiane O, Cherif H, Ayari F, Jedidi N, Hassen A (2007) Municipal solid waste compost dose effects on soil microbial biomass determined by chloroform fumigation-extraction and DNA methods. Ann Microbiol 57:681–686

    Article  CAS  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinform 10:1

    Article  CAS  Google Scholar 

  • Caporaso JG et al (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan KY, Xu Z (2009) Biochar: nutrient properties and their enhancement. Biochar Environ Manag Sci Technol 1:67–84

    Google Scholar 

  • Chan K, Van Zwieten L, Meszaros I, Downie A, Joseph S (2008) Using poultry litter biochars as soil amendments. Soil Res 46:437–444

    Article  Google Scholar 

  • Chen J et al (2013) Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China. Appl Soil Ecol 71:33–44

    Article  Google Scholar 

  • Chintala R, Mollinedo J, Schumacher TE, Malo DD, Julson JL (2014) Effect of biochar on chemical properties of acidic soil. Arch Agron Soil Sci 60:393–404

    Article  CAS  Google Scholar 

  • Fowles M (2007) Black carbon sequestration as an alternative to bioenergy. Biomass Bioenergy 31:426–432

    Article  CAS  Google Scholar 

  • Gebremikael MT, Steel H, Buchan D, Bert W, De Neve S (2016) Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions. Sci Rep 6:32862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez J, Denef K, Stewart C, Zheng J, Cotrufo M (2014) Biochar addition rate influences soil microbial abundance and activity in temperate soils. Eur J Soil Sci 65:28–39

    Article  CAS  Google Scholar 

  • Hallmann J, Rodrıguez-Kábana R, Kloepper J (1999) Chitin-mediated changes in bacterial communities of the soil, rhizosphere and within roots of cotton in relation to nematode control. Soil Biol Biochem 31:551–560

    Article  CAS  Google Scholar 

  • Hammer EC, Balogh-Brunstad Z, Jakobsen I, Olsson PA, Stipp SL, Rillig MC (2014) A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces. Soil Biol Biochem 77:252–260

    Article  CAS  Google Scholar 

  • Hardie M, Clothier B, Bound S, Oliver G, Close D (2014) Does biochar influence soil physical properties and soil water availability? Plant Soil 376:1–15

    Article  CAS  Google Scholar 

  • Hugerth LW et al (2014) Systematic design of 18S rRNA gene primers for determining eukaryotic diversity in microbial consortia. PloS One 9:e95567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juhnke ME, Mathre D, Sands D (1987) Identification and characterization of rhizosphere-competent bacteria of wheat. Appl Environ Microbiol 53:2793–2799

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly CN, Peltz CD, Stanton M, Rutherford DW, Rostad CE (2014) Biochar application to hardrock mine tailings: soil quality, microbial activity, and toxic element sorption. Appl Geochem 43:35–48

    Article  CAS  Google Scholar 

  • Kimetu JM et al (2008) Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems 11:726–739

    Article  CAS  Google Scholar 

  • Kookana R, Sarmah A, Van Zwieten L, Krull E, Singh B (2011) Biochar application to soil: agronomic and environmental benefits and unintended consequences. Adv Agron 112:103

    Article  CAS  Google Scholar 

  • Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrinenko M, Laird DA (2015) Anion exchange capacity of biochar. Green Chem 17:4628–4636

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management: science and technology. Earthscan, London

    Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022

    Article  CAS  Google Scholar 

  • Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Dugan B, Masiello CA, Gonnermann HM (2017) Biochar particle size, shape, and porosity act together to influence soil water properties. Plos One 12:e0179079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marstorp H, Guan X, Gong P (2000) Relationship between dsDNA, chloroform labile C and ergosterol in soils of different organic matter contents and pH. Soil Biol Biochem 32:879–882

    Article  CAS  Google Scholar 

  • Meyer F et al (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform 9:386

    Article  CAS  Google Scholar 

  • Mickan BS, Abbott LK, Stefanova K, Solaiman ZM (2016) Interactions between biochar and mycorrhizal fungi in a water-stressed agricultural soil. Mycorrhiza 26:1–10

    Article  CAS  Google Scholar 

  • Noyce GL, Winsborough C, Fulthorpe R, Basiliko N (2016) The microbiomes and metagenomes of forest biochars. Sci Rep 6:26425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oehl F, Silva GAd, Goto BT, Sieverding E (2011) Glomeromycota: three new genera and glomoid species reorganized. Mycotaxon 116:75–120

    Article  Google Scholar 

  • Ondov BD, Bergman NH, Phillippy AM (2011) Interactive metagenomic visualization in a web browser. BMC Bioinform 12:1

    Article  Google Scholar 

  • O’Neill B et al (2009) Bacterial community composition in Brazilian Anthrosols and adjacent soils characterized using culturing and molecular identification. Microb Ecol 58:23–35. https://doi.org/10.1007/s00248-009-9515-y

    Article  PubMed  Google Scholar 

  • Pruesse E, Peplies J, Glöckner FO (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quast C et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl Acids Res 41:D590–D596

    Article  CAS  PubMed  Google Scholar 

  • Ros M, Klammer S, Knapp B, Aichberger K, Insam H (2006) Long-term effects of compost amendment of soil on functional and structural diversity and microbial activity. Soil Use Manag 22:209–218

    Article  Google Scholar 

  • Rutherford DW, Wershaw RL, Rostad CE, Kelly CN (2012) Effect of formation conditions on biochars: compositional and structural properties of cellulose, lignin, and pine biochars. Biomass Bioenergy 46:693–701

    Article  CAS  Google Scholar 

  • Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:1

    Article  Google Scholar 

  • Sohi S, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82

    Article  CAS  Google Scholar 

  • Sun D, Meng J, Xu EG, Chen W (2016) Microbial community structure and predicted bacterial metabolic functions in biochar pellets aged in soil after 34 months. Appl Soil Ecol 100:135–143

    Article  Google Scholar 

  • Tammeorg P et al (2016) Biochars in soils: towards the required level of scientific understanding. J Environ Eng Landsc Manag. https://doi.org/10.3846/16486897.2016.1239582

    Article  Google Scholar 

  • Tong H, Hu M, Li F, Liu C, Chen M (2014) Biochar enhances the microbial and chemical transformation of pentachlorophenol in paddy soil. Soil Biol Biochem 70:142–150

    Article  CAS  Google Scholar 

  • Unger R, Killorn R, Brewer C (2011) Effects of soil application of different biochars on selected soil chemical properties. Commun Soil Sci Plant Anal 42:2310–2321. https://doi.org/10.1080/00103624.2011.605489

    Article  CAS  Google Scholar 

  • Uzoma K, Inoue M, Andry H, Fujimaki H, Zahoor A, Nishihara E (2011) Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag 27:205–212

    Article  Google Scholar 

  • Weyers SL, Spokas KA (2011) Impact of biochar on earthworm populations: a review. Appl Environ Soil Sci 2011:12

    Article  Google Scholar 

  • Wilke A et al (2012) The M5nr: a novel non-redundant database containing protein sequences and annotations from multiple sources and associated tools. BMC Bioinform 13:141

    Article  CAS  Google Scholar 

  • Wilkinson MT, Richards PJ, Humphreys GS (2009) Breaking ground: pedological, geological, and ecological implications of soil bioturbation. Earth Sci Rev 97:257–272

    Article  Google Scholar 

  • Ye J et al (2017) Chemolithotrophic processes in the bacterial communities on the surface of. ISME J 1:15

    Google Scholar 

  • Yoshitake S, Uchida M, Koizumi H, Nakatsubo T (2007) Carbon and nitrogen limitation of soil microbial respiration in a High Arctic successional glacier foreland near Ny-Ålesund, Svalbard. Polar Res 26:22–30

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully thank Mr Stephen Paterson for technical assistance and also we would like to express our appreciation to all colleagues who provided help during the sample collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim S. Abujabhah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abujabhah, I.S., Doyle, R.B., Bound, S.A. et al. Short-term impact of biochar amendments on eukaryotic communities in three different soils. Antonie van Leeuwenhoek 112, 615–632 (2019). https://doi.org/10.1007/s10482-018-1191-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-018-1191-9

Keywords

Navigation