Skip to main content
Log in

Municipal solid waste compost dose effects on soil microbial biomass determined by chloroform fumigation-extraction and DNA methods

  • Methods
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

We evaluated the relationship between microbial biomass C and N (BC and BN) as estimated by the chloroform fumigation-extraction (CFE) method and microbial biomass DNA concentration in a loam-clayey wheat cultivated soil. The soil received municipal solid waste compost at rates of 40 or 80 t ha−1 and farmyard manure at 40 t ha−1. Microbial biomasses C and N and DNA concentration centration showed the highest values for microorganisms counts with compost and farmyard manure at 40 t ha−1. Compost applications at 40 t ha−1 improve the micro-organisms growth than that of 80 t ha−1. Moreover a significant decrease of soil microbial biomass was noted after fertilisation for three years. The presence of humic acid and proteins impurities in DNA extracts; even in important level as in F-treated soil; did not affect the microbial biomass. The decrease of microbial biomass was due to heavy metals content elevation in compost at 80 t ha−1 treated soil. Thus the highest rate of municipal solid waste compost induced the lowest ratio of biomass C to soil organic carbon and the lowest ratio of biomass N to soil organic nitrogen. There was a positive relationship between BC, BN and DNA concentration. DNA concentration was significantly and positively correlated with BC and with BN. However there was a negative correlation between either micro-organisms numbers and DNA concentration, or BC and BN. The comparison of the two used methods DNA extraction and CFE showed the lowest coefficient of variation (cv %) with DNA extraction method. This last method can be used as an alternative method to measure the microbial biomass in amended soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson T.H., Domsch K.H. (1989). Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biol. Biochem., 21: 471–479.

    Article  Google Scholar 

  • Bailey V.L., Peacock A.D., Smith J.L., Bolten H.J. (2002). Relationships between soil microbial biomass determined by chloroform fumigation-extraction, substrate-induced respiration, and phospholipid fatty acid analysis. Soil Biol. Biochem., 34: 1385–1389.

    Article  CAS  Google Scholar 

  • Bouzaiane O., Cherif H., Saidi N., Jedidi N., Hassen A. (2007). Effects of municipal solid waste compost application on the microbial biomass of cultivated and non-cultivated soil in a semi-arid zone. Waste Manage. Res., 25: 327–333.

    Article  CAS  Google Scholar 

  • Breland T.A., Eltun R. (1999). Soil microbial biomass and mineralization of carbon and nitrogen in ecological, integrated and conventional forage and arable cropping systems. Biol. Fert. Soils, 30: 193–201.

    Article  CAS  Google Scholar 

  • Brookes P.C. (1995). The use of microbial parameters in monotoring soil pollution by heavy metals. Biol. Fert. Soils, 19: 269–279.

    Article  CAS  Google Scholar 

  • Brookes P.C., Landman A., Pruden G., Jenkinson D.S. (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem., 17: 837–842.

    Article  CAS  Google Scholar 

  • Chander K., Brookes P.C. (1991). Is the dehydrogenase assay invalid as a method to estimate microbial activity in copper-contaminated soils? Soil Biol. Biochem., 23: 909–915.

    Article  CAS  Google Scholar 

  • Duchaufour P. (2002). Abrégé de Pédologie: Sol, Végétation, Environnement. 5ème édition. Edition Masson.

  • Eghball B. (2002). Soil proprieties as influenced by phosphorus and nitrogen-based manure and compost applications. Agron. J., 94: 128–135.

    Article  Google Scholar 

  • Fliessbach A., Reber H.H. (1992). Effects of long- term sewage sludge applications on soil microbial parameters. In: Hall J.E., Sauerbeck D.R., L’Hermite P., Eds, Effect of Organic Contaminants in Sewage Sludge on Soil Fertility, Plants and Animals. Document no. EUR14236. Office for Official Publications of the European Community, Luxembourg, pp. 184–292.

    Google Scholar 

  • Franzluebbers A.T., Hons F.M., Zuberer D.A. (1995). Soil organic carbon, microbial biomass and miniralizable carbon and nitrogen in sorghum. Soil Sci. Soc. Am. J., 59: 460–466.

    Article  CAS  Google Scholar 

  • Gallardo A., Schlesinger W.H. (1990). Estimation of microbial biomass nitrogen by the fumigation-incubation and fumigation-extraction in warm temperate forest soil. Soil Biol. Biochem., 22: 927–932.

    Article  Google Scholar 

  • Garcia-Gil J.C., Plaza C., Soler-Rovira P., Polo A. (2000). Long term effects of minicipal solid waste compost appication on soil enzyme activities and microbial biomass. Soil Biol. Biochem., 32: 1907–1913.

    Article  CAS  Google Scholar 

  • Griffiths B.S., Diaz-Ravina M., Ritz K., McNicol J.W., Abblewhite N., Baath E. (1997). Community hybridization and %G + C profiles of microbial communities from heavy metal polluted soils. FEMS Microbiol. Ecol., 24: 103–112.

    Article  CAS  Google Scholar 

  • Hu S., Grunwald N.J., Van Bruggen A.H.C., Gamble G.R., Drinkwater L.E., Shennan C., Demment M.H. (1997). Short term effects of cover crop incorporation on soil carbon pools and nitrogen availability. Soil Sci. Soc. Am. J., 61: 901–911.

    CAS  Google Scholar 

  • jedidi N., Hassen A., Van Cleemput O., M’hiri A. (2004). Microbial biomass in soil amended with different types of organic wastes. Waste Manage. Res., 22: 93–99.

    Article  CAS  Google Scholar 

  • Jenkinson D.S., Powlson D.S. (1976). The effects of biocidal treatments on metabolism in soil — I. Fumigation with chloroform. Soil Biol. Biochem., 8: 167–177.

    Article  CAS  Google Scholar 

  • Kaschl A., Romheld V., Chen Y. (2002). The influence of soluble organic matter from muicipal solid was compost on trace metal leaching in calcareous soils. Sci. Total Environ., 291: 45–57.

    Article  CAS  PubMed  Google Scholar 

  • Kuske C.R., Banton K.L., Adorada D.L., Stark P.C., Hill, K.K., Jackson P.J. (1998). Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil. Appl. Environ. Microbiol., 64: 2463–2472.

    CAS  PubMed  Google Scholar 

  • Leckie S.E., Prescott C.E., Grayston S.J., Neufeld J.D., Mohn W.W. (2004). Comparison of chloroform fumigation-extraction, phospholipid fatty acid, and DNA methods to determine microbial biomass in forest humus. Soil Biol. Biochem., 36: 529–532.

    Article  CAS  Google Scholar 

  • Marstorp H., Guan X., Gong P. (2000). Relationship between dsDNA, chloroform labile C and ergosterol in soils of different organic matter contents and pH. Soil Biol. Biochem., 32: 879–882.

    Article  CAS  Google Scholar 

  • Ogram A., Sayler G.S., Barkay T. (1987). The extraction and purification of microbial DNA from sediments. J. Microbiol. Meth., 7: 57–66.

    Article  CAS  Google Scholar 

  • Paul E.A., Johnson R.L. (1977). Microscopic counting and adenosine 5′-triphosphate measurement in determining microbial growth in soils. Appl. Environ. Microbiol., 34: 263–269.

    CAS  PubMed  Google Scholar 

  • Salinas-Garcia J.R., Hons F.M., Matocha J.E. (1997). Long term effect of tillage and fertilization on soil organic matter dynamics. Soil Sci. Soc. Am. J., 61: 152–159.

    CAS  Google Scholar 

  • Steffan R.J., Goksoyr J., Bej A.K., Atlas R.M. (1988). Recovery of DNA from soils and sediments. Appl. Environ. Microbiol., 54: 2908–2915.

    CAS  PubMed  Google Scholar 

  • Tate R.L. (1987). Soil Organic Matter: Biological and Ecological Effects. Wiley, New York, pp. 98–99.

    Google Scholar 

  • Tate K.R., Ross D.J., Feltham C.W. (1988). A direct extraction method to estimate soil microbial C: effects of experimental variables and some different calibration procedures. Soil Biol. Biochem., 20: 329–335.

    Article  CAS  Google Scholar 

  • Tebbe C.C., Vahjen W. (1993). Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and yeast. Appl. Environ. Microbiol., 59: 2657–2665.

    CAS  PubMed  Google Scholar 

  • Trevors J.T., Lee H., Cook S. (1992). Direct extraction of DNA from soil. Microb. Releases, 1: 111–115.

    CAS  Google Scholar 

  • Vance E.D., Brookes P.C., Jenkinson D.S. (1987). Microbial biomass measurements in forest soils: determination of KC values and tests of hypotheses to explain the failure of the chloroform fumigation-incubation method in acid soils. Soil Biol. Biochem., 19: 689–696.

    Article  Google Scholar 

  • Vong P.C., Kabibou I., Jacquin F. (1990). Etude des corrélations entre biomasse microbienne et différentes fractions d’azote organique présentées dans deux sols Lorrains. Soil Biol. Biochem., 22: 385–399.

    Article  Google Scholar 

  • Walkley A., Black I.A. (1934). An examination of the degtijarf method for determination of soil organic matter and proposed modification of the chromic acid titration method. Soil Sci., 37: 310–314.

    Article  Google Scholar 

  • Wu J., Brookes P.C. (2005). The proportional mineralisation of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil. Soil Biol. Biochem., 37: 507–515.

    Article  CAS  Google Scholar 

  • Zhou J., Bruns M.A., Tiedje J.M. (1996). DNA recovery from soils of diverse composition. Appl. Environ. Microbiol., 62: 316–322.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olfa Bouzaiane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouzaiane, O., Cherif, H., Ayari, F. et al. Municipal solid waste compost dose effects on soil microbial biomass determined by chloroform fumigation-extraction and DNA methods. Ann. Microbiol. 57, 681–686 (2007). https://doi.org/10.1007/BF03175374

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175374

Key words

Navigation