Skip to main content

Advertisement

Log in

Fungal decomposers of leaf litter from an invaded and native mountain forest of NW Argentina

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The impact of plant species invasions on the abundance, composition and activity of fungal decomposers of leaf litter is poorly understood. In this study, we isolated and compared the relative abundance of ligninocellulolytic fungi of leaf litter mixtures from a native forest and a forest invaded by Ligustrum lucidum in a lower mountain forest of Tucuman, Argentina. In addition, we evaluated the relationship between the relative abundance of ligninocellulolytic fungi and properties of the soil of both forest types. Finally, we identified lignin degrading fungi and characterized their polyphenol oxidase activities. The relative abundance of ligninocellulolytic fungi was higher in leaf litter mixtures from the native forest. The abundance of cellulolytic fungi was negatively related with soil pH while the abundance of ligninolytic fungi was positively related with soil humidity. We identified fifteen genera of ligninolytic fungi; four strains were isolated from both forest types, six strains only from the invaded forest and five strains were isolated only from the native forest. The results found in this study suggest that L. Lucidum invasion could alter the abundance and composition of fungal decomposers. Long-term studies that include an analysis of the nutritional quality of litter are needed, for a more complete overview of the influence of L. Lucidum invasion on fungal decomposers and on leaf litter decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alexopoulos CJ, Mims CW, Blackwell M (1996) Introductory mycology, 4th edn. Wiley, New York, USA

    Google Scholar 

  • Aragón R, Groom M (2003) Invasion by Ligustrum lucidum (Oleaceae) in NW Argentina: early stage characteristics in different habitat types. Rev Biol Trop 51:59–70

    PubMed  Google Scholar 

  • Aragón R, Morales JM (2003) Species composition and invasion in NW Argentinian secondary forests: effects of land use history, environment and landscape. J Veg Sci 14:195–204

    Article  Google Scholar 

  • Aragón R, Montti L, Ayup MM, Fernández R (2014a) Exotic species as modifiers of ecosystem processes: Litter decomposition in native and invaded secondary forests of NW Argentina. Acta Oecol 54:21–28

    Article  Google Scholar 

  • Aragón R, Sardans J, Peñuelas J (2014b) Soil enzymes associated with carbon and nitrogen cycling in invaded and native secondary forests of northwestern Argentina. Plant Soil 384:169–183

    Article  Google Scholar 

  • Araujo Costa L, Pascholati Gusmão LF (2015) Characterization saprobic fungi on leaf litter of two species of trees in the Atlantic Forest, Brazil. Braz J Microbiol 46:1027–1035

    Article  Google Scholar 

  • Ashton IW, Hyatt LA, Howe KM, Gurevitch J, Lerdau MT (2005) Invasive species accelerate decomposition and litter nitrogen loss in a mixed deciduous forest. Ecol Appl 15:1263–1272

    Article  Google Scholar 

  • Ayup MM, Montti L, Aragón R, Grau HR (2014) Invasion of Ligustrum lucidum (Oleaceae) in the southern Yungas: Changes in habitat properties and decline in bird diversity. Acta Oecol 54:72–81

    Article  Google Scholar 

  • Bachelot B, Uriarte M, Zimmerman JK, Thompson J, Leff JW, Asiaii A, Koshner J, McGuire K (2016) Long-lasting effects of land use history on soil fungal communities in second-growth tropical rain forests. Ecol Appl 26:1881–1895

    Article  PubMed  Google Scholar 

  • Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. Forest Ecol Manag 133:13–22

    Article  Google Scholar 

  • Berg B, McClaugherty CA (2008) Plant litter: decomposition, humus formation, carbon sequestration, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Bianchi AR (1981) Las precipitaciones en el Noroeste argentino. INTA, Salta

    Google Scholar 

  • Bills GF, Polishook JD (1994) Abundance and diversity of microfungi in leaf litter of a lowland rain forest in Costa Rica. Mycologia 86:187–198

    Article  Google Scholar 

  • Broz AK, Manter DK, Vivanco JM (2007) Soil fungal abundance an-d diversity: another victim of the invasive plant Centaurea maculosa. The ISME J 1:763–765

    Article  CAS  PubMed  Google Scholar 

  • Cabrera A (1976) Regiones fitogeográficas de Argentina. In: Kugler WF (ed) Enciclopedia Argentina de Agricultura y Jardinería II, 2nd edn. Acme, Buenos Aires, pp 1–85

    Google Scholar 

  • Cabuk A, Unal AT, Kolankaya N (2006) Biodegradation of cyanide by a white rot fungus, Trametes versicolor. Biotechnol Lett 28:1313–1317

    Article  CAS  PubMed  Google Scholar 

  • Ceballos SJ, Malizia A, Chacoff NP (2015) Influencia de la invasión de Ligustrum lucidum (Oleaceae) sobre la comunidad de lianas en la sierra de San Javier (Tucumán-Argentina). Ecol Aust 25:65–74

    Google Scholar 

  • Colpaert JV, Van Laere A (1996) A comparison of the extracellular enzyme activities of two ectomycorrhizal and a leaf-saprotrophic basidiomycete colonizing beech leaf litter. New Phytol 133:133–141

    Article  Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, Chichester

    Book  Google Scholar 

  • de Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811

    Article  PubMed  Google Scholar 

  • DeAngelis KM, Chivian D, Fortney JL, Arkin AP, Simmons B, Hazen TC, Silver WL (2013) Changes in microbial dynamics during long-term decomposition in tropical forests. Soil Biol Biochem 66:60–68

    Article  CAS  Google Scholar 

  • Easdale TA, Healey JR, Grau HR, Malizia A (2007) Tree life histories in a montane subtropical forest: species differ independently by shade-tolerance, turnover rate and substrate preference. J Ecol 95:1234–1239

    Article  Google Scholar 

  • Ehrenfeld J, Kourtev P, Huang W (2001) Changes in soil functions following invasions of exotic understory plants in deciduous forests. Ecol Appl 11:1287–1300

    Article  Google Scholar 

  • Estación Experimental Agroindustrial Obispo Colombres (2015) http://www.eeaoc.org.ar/agromet/. Accessed 10 Nov 2016

  • Fang G, Hammar S, Grumet R (1992) A quick and inexpensive method for removing polysaccharides from plant genomic DNA. Biotechniques 13:52–55

    CAS  PubMed  Google Scholar 

  • Geml J, Pastor N, Fernandez L, Pacheco S, Semenova TA, Becerra AG, Wicaksono CY, Nouhra ER (2014) Large-scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient. Mol Ecol 23:2452–2472

    Article  CAS  PubMed  Google Scholar 

  • Grau HR, Aragón R (2000) Árboles invasores de la Sierra de San Javier. In: Grau HR, Aragón R (eds) Árboles exóticos de las Yungas Argentinas. LIEY- UNT, Tucumán, pp 5–20

    Google Scholar 

  • Grau HR, Arturi MF, Brown AD, Aceñolaza PG (1997) Floristic and structural patterns along a chronosequence of secondary forest succession in Argentinean subtropical montane forest. For Ecol Manag 95:161–171

    Article  Google Scholar 

  • Grau HR, Hernández ME, Gutierrez J, Gasparri NI, Casavecchia MC, Flores E, Paolini L (2008) A peri-urban neotropical forest transition and its consequences for environmental services. Ecol Soc 13:35

    Article  Google Scholar 

  • Hammel KE (1997) Fungal degradation of lignin. In: Cadisch G, Giller KE (eds) Plant litter quality and decomposition. CAB-International, Wallingford, pp 33–46

    Google Scholar 

  • Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218

    Article  Google Scholar 

  • Kerekes J, Kaspari M, Stevenson B, Nilsson RH, Hartmann M, Amend A, Bruns TD (2013) Nutrient enrichment increased species richness of leaf litter fungal assemblages in a tropical forest. Mol Ecol 22:2827–2838

    Article  CAS  PubMed  Google Scholar 

  • Korniłłowicz-Kowalska T, Iglik H, Wojdyło B (2003) Correlation between the abundance of cellulolitic fungi and selected soil properties. Acta Micol 38:161–172

    Article  Google Scholar 

  • Kourtev PS, Ehrenfeld JG, Häggblom M (2003) Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biol Bioch 35:895–905

    Article  CAS  Google Scholar 

  • Kurtzman CP, Fell JW, Boekhout T, Robert V (eds) (2011) Methods for isolation, phenotypic characterization and maintenance of yeasts. In: The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 87–110

    Chapter  Google Scholar 

  • Kwiatkowski NP, Babiker WM, Merz WG, Carroll KC, Zhang SX (2012) Evaluation of nucleic acid sequencing of the D1/D2 region of the large subunit of the 28S rDNA and the internal transcribed spacer region using SmartGene IDNS Software for identification of filamentous fungi in a clinical laboratory. J Mol Diagn 14(4):393–401

    Article  CAS  PubMed  Google Scholar 

  • Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Bioch 40:2407–2415

    Article  CAS  Google Scholar 

  • Lichstein JW, Grau HR, Aragón R (2004) Recruitment limitation in secondary forests dominated by an exotic tree. J Veg Sci 15:721–728

    Article  Google Scholar 

  • Lomascolo A, Uzan-Boukhris E, Herpoel-Gimbert I, Sigoillot JC, Lesage-Meessen L (2011) Peculiarities of Pycnoporus species for applications in biotechnology. Appl Microbiol Biotechnol 92:1129–1149

    Article  CAS  PubMed  Google Scholar 

  • Malherbe S, Cloete TE (2002) Lignocellulose biodegradation: fundamentals and applications. Rev Environ Sci Bio/Technol 1:105–114

    Article  CAS  Google Scholar 

  • Malizia A, Grau HR, Lichstein JW (2010) Soil phosphorus and disturbance influence liana communities in a subtropical montane forest. J Veg Sci 21:551–560

    Article  Google Scholar 

  • Márquez ATA, Mendoza MGD, González MSS (2007) Actividad fibrolitica de enzimas producidas por Trametes sp. EUM1, Pleurotus ostreatus IE8 y Aspergillus niger AD96.4 en fermentación sólida. Interciencia 32:780–785

    Google Scholar 

  • McGuire KL, Bent E, Borneman J, Majumder A, Allison SD, Treseder KK (2010) Functional diversity in resource use by fungi. Ecology 91(8):2324–2332

    Article  PubMed  Google Scholar 

  • McGuire KL, Fierer N, Bateman C, Treseder KK, Turne BL (2012) Fungal community composition in neotropical rain forests: the influence of tree diversity and precipitation. Microb Ecol 63:804–812

    Article  PubMed  Google Scholar 

  • Moredo N, Lorenzo M, Domínguez A, Moldes D, Cameselle C, Sanroman A (2003) Enhanced ligninolytic enzyme production and degrading capability of Phanerochaete chrysosporium and Trametes versicolor. World J Microb Biotechnol 19:665–669

    Article  CAS  Google Scholar 

  • Osono T (2007) Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecol Res 22:955–974

    Article  Google Scholar 

  • Osono T, Hirose D, Fujimaki R (2006) Fungal colonization as affected by litter depth and decomposition stage of needle litter. Soil Biol Bioch 38:2743–2752

    Article  CAS  Google Scholar 

  • Osono T, Ishii Y, Takeda H, Seramethakun T, Khamyong S, To-Anun C, Hirose D, Tokumasu S, Kakishima M (2009) Fungal succession and lignin decomposition on Shorea obtusa leaves in a tropical seasonal forest in northern Thailand. Fungal divers 36:101–119

    Google Scholar 

  • Paulus BC, Kanowski J, Gadek PA, Hyde KD (2006) Diversity and distribution of saprobic microfungi in leaf litter of an Australian tropical rainforest. Mycol Res 110:1441–1454

    Article  PubMed  Google Scholar 

  • Pérez J, Muñoz-Dorado J, De-la-Rubia T, Martínez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63

    Article  PubMed  Google Scholar 

  • Pietikäinen J, Pettersson M, Bååth E (2004) Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiol Ecol 52:49–58

    Article  PubMed  Google Scholar 

  • Pointing SB (1999) Qualitative methods for the determination of lignocellulolytic enzyme production by tropical fungi. Fungal Divers 2:17–33

    Google Scholar 

  • Prescott CE, Grayston SJ (2013) Tree species influence on microbial communities in litter and soil: current knowledge and research needs. Forest Ecol Manag 309:19–27

    Article  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reiss R, Ihssen J, Richter M, Eichhorn E, Schilling B, Thöny-Meyer L (2013) Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra. PLoS ONE 8:e65633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    Article  PubMed  Google Scholar 

  • Sánchez C (2009) Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194

    Article  PubMed  Google Scholar 

  • Saparrat MCN, Hammer E (2006) Decolorization of synthetic dyes by the deuteromycete Pestalotiopsis guepinii CLPS no. 786 strain. J Basic Microbiol 46:28–33

    Article  CAS  PubMed  Google Scholar 

  • Schneider T, Keiblinger KM, Schmid E, Sterflinger-Gleixner K, Ellersdorfer G, Roschitzki B, Richter A, Eberl L, Zechmeister-Boltenstern S, Riedel K (2012) Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J 6:1749–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf A et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. PNAS 109:6241–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slesak RA, Harrington TB, D’Amato AW (2016) Invasive scotch broom alters soil chemical properties in Douglas-fir forests of the Pacific Northwest, USA. Plant Soil 398:281–289

    Article  CAS  Google Scholar 

  • Stefanowicz AM, Stanek M, Nobis M, Zubek S (2016) Species-specific effects of plant invasions on activity, biomass, and composition of soil microbial communities. Biol Fertil Soils 52:841–852

    Article  CAS  Google Scholar 

  • Strauss MLA, Jolly NP, Lambrechts MG, Van Rensburg P (2001) Screening for the production of extracellular hydrolytic enzymes by non- Sacchraromyces wine yeasts. J Appl Microbiol 91:182–190

    Article  CAS  PubMed  Google Scholar 

  • Tateno R, Tokuchi N, Yamanaka N, Du S, Otsuki K, Shimamura T, Xue Z, Wang S, Hou Q (2007) Comparison of litterfall production and leaf litter decomposition between an exotic black locust plantation and an indigenous oak forest near Yan’an on the Loess Plateau, China. For Ecol Manag 241:84–90

    Article  Google Scholar 

  • Tong P, Hong Y, Xiao Y, Zhang M, Tu X, Cui T (2007) High production of laccase by a new basidiomycete, Trametes sp. Biotechnol Lett 29:295–301

    Article  CAS  PubMed  Google Scholar 

  • Voříšková J, Baldrian P (2013) Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J 7:477–486

    Article  PubMed  Google Scholar 

  • Wardle DA, Yeates GW, Barker GM, Bonner KI (2006) The influence of plant litter diversity on decomposer abundance and diversity. Soil Biol Biochem 38:1052–1062

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • Zamora Nasca LB, Montti L, Grau HR, Paolini L (2014) Efectos de la invasión del ligustro, Ligustrum lucidum, en la dinámica hídrica de las Yungas del noroeste Argentino. Bosque 35:195–205

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-PIP 0372) and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT-PICT 0480). We thank Fernandez MJ for field assistance, Nanni S for the help with the English version of this manuscript and associate editor and two anonymous reviewers for comments that improved the manuscript. Finally we acknowledge the authorities of Parque Sierra de San Javier for the permissions to conduct this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romina Daiana Fernandez.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandez, R.D., Bulacio, N., Álvarez, A. et al. Fungal decomposers of leaf litter from an invaded and native mountain forest of NW Argentina. Antonie van Leeuwenhoek 110, 1207–1218 (2017). https://doi.org/10.1007/s10482-017-0893-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-017-0893-8

Keywords

Navigation