Skip to main content
Log in

Bounds in multi-horizon stochastic programs

  • S.I.: Stochastic Optimization: Theory & Applications in Memory of M.Bertocchi
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper, we present bounds for multi-horizon stochastic optimization problems, a class of problems introduced in Kaut et al. (Comput Manag Sci 11:179–193, 2014) relevant in many industry-life applications typically involving strategic and operational decisions on two different time scales. After providing three general mathematical formulations of a multi-horizon stochastic program, we extend the definition of the traditional Expected Value problem and Wait-and-See problem from stochastic programming in a multi-horizon framework. New measures are introduced allowing to quantify the importance of the uncertainty at both strategic and operational levels. Relations among the solution approaches are then determined and chain of inequalities provided. Numerical experiments based on an energy planning application are finally presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. See https://pvwatts.nrel.gov/.

References

  • Abgottspon, H. (2015). Hydro power planning: Multi-horizon modeling and its applications. Doctoral Thesis, https://www.research-collection.ethz.ch/handle/20.500.11850/106200.

  • Abgottspon, H., & Andersson, G. (2016). Multi-horizon modeling in hydro power planning. Energy Procedia, 87, 2–10.

    Article  Google Scholar 

  • Birge, J. R. (1982). The value of the stochastic solution in stochastic linear programs with fixed recourse. Mathematical Programming, 24, 314–325.

    Article  Google Scholar 

  • Birge, J. R. (1985). Aggregation bounds in stochastic linear programming. Mathematical Programming, 31, 25–41.

    Article  Google Scholar 

  • Birge, J. R., & Louveaux, F. (2011). Introduction to stochastic programming. New York: Springer.

    Book  Google Scholar 

  • Deng, Y., Ahmed, S., Lee, J., & Shen, S. (2017). Scenario grouping and decomposition algorithms for chance-constrained programs. available in Optimization Online, http://www.optimization-online.org/DB_HTML/2017/02/5853.html.

  • Edmundson, H. P. (1956). Bounds on the expectation of a convex function of a random variable. Tech. rep. RAND Corporation, Santa Monica.

  • Frauendorfer, K. (1988). Solving SLP recourse problems with binary multivariate distributions-the dependent case. Mathematical Operational Research, 13(3), 377–394.

    Article  Google Scholar 

  • Frauendorfer, K., Kuhn, D., & Schürle, M. (2011). Barycentric bounds in stochastic programming: Theory and application. In G. B. Dantzig & G. Infanger (Eds.), Stochastic programming: The state of the art (pp. 67–96). New York: Springer.

    Google Scholar 

  • Frauendorfer, K., & Schürle, M. (2001). Multistage stochastic programming: Barycentric approximation. In P. Pardalos & C. A. Floudas (Eds.), Encyclopedia of optimization (Vol. 3). Kluwer Academic Publishers: Dordrecht, NL. ISBN 0-7923-6932-7, 576–580.

    Google Scholar 

  • Hausch, D. B., & Ziemba, W. T. (1983). Bounds on the value of information in uncertain decision problems II. Stochastics, 10, 181–217.

    Article  Google Scholar 

  • Hellemo, L., Midthun, K., Tomasgard, A., & Werner, A. (2012). Multistage stochastic programming for natural gas infrastructure design with a production perspective, World Scientific Series in Finance. In H. I. Gassman & W. T. Ziemba (Eds.), Stochastic programming–Applications in finance, energy, planning and logistics. Singapore: World Scientific Series in Finance.

    Google Scholar 

  • Huang, C. C., Vertinsky, I., & Ziemba, W. T. (1977a). Sharp bounds on the value of perfect information. Operations Research, 25(1), 128–139.

    Article  Google Scholar 

  • Huang, C. C., Ziemba, W. T., & Ben-Tal, A. (1977b). Bounds on the expectation of a convex function of a random variable: with applications to stochastic programming. Operations Research, 25(2), 315–325.

    Article  Google Scholar 

  • Jensen, J. L. (1906). Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Mathematica, 30(1), 175–193.

    Article  Google Scholar 

  • Kaut, M., Midthun, K. T., Werner, A. S., Tomasgard, A., Hellemo, L., & Fodstad, M. (2014). Multi-horizon stochastic programming. Computational Management Science, 11, 179–193.

    Article  Google Scholar 

  • Kuhn, D. (2005). Generalized bounds for convex multistage stochastic programs., Lecture notes in economics and mathematical systems, 548 Berlin: Springer.

    Google Scholar 

  • Kuhn, D. (2008). Aggregation and discretization in multistage stochastic programming. Mathematical Programming of Series A, 113, 61–94.

    Article  Google Scholar 

  • Madansky, A. (1959). Bounds on the expectation of a convex function of a multivariate random variable. Annals of Mathematical Statistics, 30(3), 743–746.

    Article  Google Scholar 

  • Madansky, A. (1960). Inequalities for stochastic linear programming problems. Management Science, 6, 197–204.

    Article  Google Scholar 

  • Maggioni, F., Allevi, E., & Bertocchi, M. (2014). Bounds in multistage linear stochastic programming. Journal of Optimization Theory and Applications, 163(1), 200–229.

    Article  Google Scholar 

  • Maggioni, F., Allevi, E., & Bertocchi, M. (2016). Monotonic bounds in multistage mixed-integer linear stochastic programming. Computational Management Science, 13(3), 423–457.

    Article  Google Scholar 

  • Maggioni, F., & Pflug, G. C. (2016). Bounds and approximations for multistage stochastic programs. SIAM Journal of Optimization, 26(1), 831–855.

    Article  Google Scholar 

  • Maggioni, F., & Pflug, G. C. (2019). Guaranteed bounds for general non-discrete multistage risk-averse stochastic optimization programs. SIAM Journal of Optimization, 29(1), 454–483.

    Article  Google Scholar 

  • Maggioni, F., & Wallace, S. W. (2012). Analyzing the quality of the expected value solution in stochastic programming. Annals of Operations Research, 200, 37–54.

    Article  Google Scholar 

  • Rosa, C. H., & Takriti, S. (1999). Improving aggregation bounds for two-stage stochastic programs. Operations Research Letters, 24(3), 127–137.

    Article  Google Scholar 

  • Sandikçi, B., Kong, N., & Schaefer, A. J. (2012). A hierarchy of bounds for stochastic mixed-integer programs. Mathematical Programming Series A, 138(1), 253–272.

    Google Scholar 

  • Schütz, P., Tomasgard, A., & Ahmed, S. (2009). Supply chain design under uncertainty using sample average approximation and dual decomposition. European Journal of Operational Research, 199(2), 409–419.

    Article  Google Scholar 

  • Seljom, P., & Tomasgard, A. (2015). Short-term uncertainty in long-term energy system models—A case study with focus on wind power in Denmark. Energy Economics, 49, 157–167.

    Article  Google Scholar 

  • Seljom, P., & Tomasgard, A. (2017). The impact of policy actions and future energy prices on the cost-optimal development of the energy system in Norway and Sweden. Energy Policy, 106, 85–102.

    Article  Google Scholar 

  • Shapiro, A., Dentcheva, D., & Ruszczynski, A. (2014). Lectures on Stochastic Programming: Modeling and Theory (2nd ed.). Philadelphia, PA: Society for Industrial and Applied Mathematics.

    Book  Google Scholar 

  • Skar, C., Doorman, G., Pérez-Valdés, G. A., & Tomasgard, A. (2016). A multi-horizon stochastic programming model for the European power system. CenSES working paper 2/2016, ISBN: 978-82-93198-13-0.

  • Sönmez, E., Kekre, S., Scheller-Wolf, A., & Secomandi, N. (2013). Strategic analysis of technology and capacity investments in the liquefied natural gas industry. European Journal of Operational Research, 226(1), 100–114.

    Article  Google Scholar 

  • Su, Z., Egging, R., Huppmann, D., & Tomasgard, A. (2015). A Multi-stage multi-horizon stochastic equilibrium model of multi-fuel energy markets. CenSES working paper 2/2015 ISBN: 978-82-93198-15-4.

  • Werner, A. S., Pichler, A., Midthun, K. T., Hellemo, L., & Tomasgard, A. (2013). Risk measures in multi-horizon scenario trees. In R. Kovacevic, G. Pflug, & M. Vespucci (Eds.), Handbook of risk management in energy production and trading (Vol. 199)., International Series in Operations Research & Management Science Boston: Springer.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Maggioni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The idea of this work was originated by a discussion with Marida Bertocchi. The authors would like to express their gratitude for being an exceptional colleague and friend. This work is dedicated to her memory.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maggioni, F., Allevi, E. & Tomasgard, A. Bounds in multi-horizon stochastic programs. Ann Oper Res 292, 605–625 (2020). https://doi.org/10.1007/s10479-019-03244-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-019-03244-9

Keywords

Navigation