Skip to main content
Log in

Monotonic bounds in multistage mixed-integer stochastic programming

  • Published:
Computational Management Science Aims and scope Submit manuscript

Abstract

Multistage stochastic programs bring computational complexity which may increase exponentially with the size of the scenario tree in real case problems. For this reason approximation techniques which replace the problem by a simpler one and provide lower and upper bounds to the optimal value are very useful. In this paper we provide monotonic lower and upper bounds for the optimal objective value of a multistage stochastic program. These results also apply to stochastic multistage mixed integer linear programs. Chains of inequalities among the new quantities are provided in relation to the optimal objective value, the wait-and-see solution and the expected result of using the expected value solution. The computational complexity of the proposed lower and upper bounds is discussed and an algorithmic procedure to use them is provided. Numerical results on a real case transportation problem are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed S, Tawarmalani M, Sahinidis NV (2004) A Finite branch-and-bound algorithm for two-stage stochastic integer programs. Math Program 100(2):355–377

    Article  Google Scholar 

  • Anstreicher KM (1999) Linear programming in \(O(n^3/ln \, n \cdot L)\) operations. SIAM J Optim 9(4):803–812

    Article  Google Scholar 

  • Avriel M, Williams AC (1970) The value of information and stochastic programming. Oper Res 18:947–954

    Article  Google Scholar 

  • Birge JR (1982) The value of the stochastic solution in stochastic linear programs with fixed recourse. Math Program 24:314–325

    Article  Google Scholar 

  • Birge JR (1985) Aggregation bounds in stochastic linear programming. Math Program 31:25–41

    Article  Google Scholar 

  • Birge JR, Louveaux F (2011) Introduction to stochastic programming. Springer, New York

    Book  Google Scholar 

  • Edmundson HP (1956) Bounds on the expectation of a convex function of a random variable. RAND Corporation, Santa Monica (Tech. rep)

    Google Scholar 

  • Escudero LF, Garín A, Merino M, Pérez G (2007) The value of the stochastic solution in multistage problems. Top 15:48–64

    Article  Google Scholar 

  • Frauendorfer K (1988) Solving SLP recourse problems with binary multivariate distributionsthe dependent case. Math Oper Res 13(3):377–394

    Article  Google Scholar 

  • Hausch DB, Ziemba WT (1983) Bounds on the value of information in uncertain decision problems II. Stochastics 10:181–217

    Article  Google Scholar 

  • Huang CC, Vertinsky I, Ziemba WT (1977) Sharp bounds on the value of perfect information. Oper Res 25(1):128–139

    Article  Google Scholar 

  • Huang CC, Ziemba WT, Ben-Tal A (1977) Bounds on the expectation of a convex function of a random variable: with applications to stochastic programming. Oper Res 25(2):315–325

    Article  Google Scholar 

  • Huang K, Ahmed S (2009) The value of multi-stage stochastic programming in capacity planning under uncertainty. Oper Res 57(4):893–904

    Article  Google Scholar 

  • Jensen JL (1906) Sur les fonctions convexes et les ingalits entre les valeurs moyennes. Acta Mathematica 30(1):175–193

    Article  Google Scholar 

  • Klein H, Willem K, van der Vlerk MH (1999) Stochastic integer programming: general models and algorithms. Ann Oper Res 85:39–57

    Article  Google Scholar 

  • Kuhn D (2005) Generalized bounds for convex multistage stochastic programs. Lecture notes in economics and mathematical systems, vol 548. Spinger, Berlin Heidelberg

  • Kuhn D (2008) Aggregation and discretization in multistage stochastic programming. Math Program Ser A 113:61–94

    Article  Google Scholar 

  • Kuhn D (2009) An information-based approximation scheme for stochastic optimization problems in continuous time. Math Oper Res 34(2):428–444

    Article  Google Scholar 

  • Lulli G, Sen S (2004) A branch and price algorithm for multistage stochastic integer programming with application to stochastic batch sizing problems. Manag Sci 50:786–796

    Article  Google Scholar 

  • Madansky A (1959) Bounds on the expectation of a convex function of a multivariate random variable. Ann Math Stat 30(3):743–746

    Article  Google Scholar 

  • Madansky A (1960) Inequalities for stochastic linear programming problems. Manag Sci 6:197–204

    Article  Google Scholar 

  • Maggioni F, Wallace WS (2012) Analyzing the quality of the expected value solution in stochastic programming. Ann Oper Res 200(1):37–54

    Article  Google Scholar 

  • Maggioni F, Allevi E, Bertocchi M (2014) Bounds in multistage linear stochastic programming. J Optim Theory App 163(1):200–229

    Article  Google Scholar 

  • Maggioni F, Pflug G (2016) Bounds and approximations for multistage stochastic programs. SIAM J Optim 26(1):831–855

    Article  Google Scholar 

  • Maggioni F, Potra F, Bertocchi M (2014) A scenario-based framework for supply planning under uncertainty: stochastic programming versus robust optimization (under evaluation)

  • Maggioni F, Allevi E, Bertocchi M (2014) Monotonic bounds in multistage mixed-integer linear stochastic programming: theoretical and numerical results. http://www.optimization-online.org/DB_HTML/2015/02/4765.html. Accessed 6 May 2014

  • Raiffa H, Schlaifer R (1961) Applied statistical decision theory. Harvard Business School, Boston

    Google Scholar 

  • Römisch W, Schultz R (2001) Multistage stochastic integer programs: an introduction. In: Grötschel M, Krumke SO, Rambau J (eds) Online optimization of large scale systems. Springer, Berlin, pp 579–598

    Google Scholar 

  • Rosa CH, Takriti S (1999) Improving aggregation bounds for two-stage stochastic programs. Oper Res Lett 24(3):127–137

    Article  Google Scholar 

  • Ruszczyński A, Shapiro A (eds) (2003) Stochastic programming. Series handbooks in operations research and management science, vol 3. Elsevier, Amsterdam

  • Sandikçi B, Kong N, Schaefer AJ (2012) A hierarchy of bounds for stochastic mixed-integer programs. Math Program Ser A 138(1):253–272

    Google Scholar 

  • Sandikçi B, \(\ddot{O}\)zaltin OY (2014) A scalable bounding method for multi-stage stochastic integer programs http://www.optimization-online.org/DB_HTML/2014/07/4445.html

  • Schultz R, Stougie L, van der Vlerk MH (1996) Two-stage stochastic integer programming: a survey. Stat Neerlandica 50(3):404–416

    Article  Google Scholar 

  • Sen S (2005) Algorithms for stochastic mixed-integer programming models. In: Aardal K, Nemhauser GL, Weismantel R (eds) Handbook of discrete optimization. North-Holland Publishing Co., Amsterdam, pp 515–558

    Chapter  Google Scholar 

  • Sen S, Sherali HD (2006) Decomposition with branch-and-cut approaches for two-stage stochastic mixed-integer programming. Math Program Ser A 106(2):203–223

    Article  Google Scholar 

  • Shapiro A (2008) Stochastic programming approach to optimization under uncertainty. Math Program Ser B 112(1):183–220

    Article  Google Scholar 

  • Shapiro A, Dencheva D, Ruszczyński A (2009) Lectures on stochastic programming: modeling and theory. MPS-SIAM series on optimization

  • Sherali HD, Zhu X (2006) On solving discrete two-stage stochastic programs having mixed-integer first- and second-stage variables. Math Program Ser B 108(2):597–616

    Article  Google Scholar 

  • Van der Vlerk MH (2010) Convex approximations for a class of mixed-integer recourse models. Ann Oper Res 177:139–150

    Article  Google Scholar 

  • Zenarosa GL, Prokopyev OA, Schaefer AJ (2014) Scenario-tree decomposition: bounds for multistage stochastic mixed-integer programs. http://www.optimization-online.org/DB_HTML/2014/09/4549.html

Download references

Acknowledgments

The authors thank the anonymous referees on an earlier version of the paper for their helpful comments. The work has been supported by Bergamo and Brescia University grants 2014–2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Maggioni.

Appendix

Appendix

Table 2 Percentage deviation from RP of lower bounds MEGSO(1, R) (see fourth column), with R fixed scenarios \(R=1,\ldots ,53\) (second column) and cardinality of each subproblem \(R+1\) (first column)
Table 3 Percentage deviation from RP of lower bounds MEGSO(2, R) (see fourth column), with R fixed scenarios \(R=1,\ldots ,52\) (second column) and cardinality of each subproblem \(R+2\) (first column)
Table 4 Percentage deviation from RP of lower bounds MEGSO(3, R) (see fourth column), with R fixed scenarios \(R=1,\ldots ,51\) (second column) and cardinality of each subproblem \(R+1\) (first column)
Table 5 Percentage deviation from RP of lower bounds MEGSO(k, 40) (see fourth column) and MEGS(k, 40) (see fifth column) with 40 fixed scenarios (second column) and k free scenarios where \(k=1,\ldots ,14\)
Table 6 Percentage deviation from RP of upper bounds MEGS(1, R) (see fourth column), with R fixed scenarios \(R=1,\ldots ,53\) (second column) and cardinality of each subproblem \(R+1\) (first column)
Table 7 Percentage deviation from RP of the expected value problem EV and of the Expected result at stage t by using the expected value solution \(EEV^t\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maggioni, F., Allevi, E. & Bertocchi, M. Monotonic bounds in multistage mixed-integer stochastic programming. Comput Manag Sci 13, 423–457 (2016). https://doi.org/10.1007/s10287-016-0254-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10287-016-0254-5

Keywords

Navigation