Skip to main content
Log in

On the existence of periodic motions of the excited inverted pendulum by elementary methods

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Using purely elementary methods, necessary and sufficient conditions are given for the existence of 2T-periodic and 4T-periodic solutions around the upper equilibrium of the mathematical pendulum when the suspension point is vibrating with period 2T. The equation of the motion is of the form

$$\ddot{\theta}-\frac{1}{l}(g+a(t)) \theta=0,$$

where l, g are constants and

$$a(t) := \begin{cases} A &\text{if } 2kT\leq t < (2k+1)T,\\ -A &\text{if } (2k+1)T\leq t < (2k+2)T,\end{cases}\quad (k=0,1,\dots);$$

A, T are positive constants. The exact stability zones for the upper equilibrium are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnold, Ordinary Differential Equations, Springer-Verlag (Berlin, 2006).

  2. Bihari I.: On periodic solutions of certain second order ordinary differential equations with periodic coefficients. Acta Math. Acad. Sci. Hungar., 12, 11–16 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blackburn J. A., Smith H. J. T., Gronbeck-Jensen N.: Stability and Hopf bifurcation in an inverted pendulum. Amer. J. Physics, 60, 903–908 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Butikov E. I.: Parametric resonance in a linear oscillator at square-wave modulation. Eur. J. Phys., 26, 157–174 (2005)

    Article  MATH  Google Scholar 

  5. Butikov E.: An improved criterion for Kapitza’s pendulum. J. Phys. A: Math. Theor., 44, 1–16 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Chicone, Ordinary Differential Equations with Applications, Springer-Verlag (New York, 1999).

  7. Csizmadia L., Hatvani L.: An extension of the Levi–Weckesser method to the stabilization of the inverted pendulum under gravity. Meccanica, 49, 1091–1100 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Csizmadia L., Hatvani L.: On a linear model of swinging with a periodic step function coefficient. Acta Sci. Math. (Szeged), 81, 483–502 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Formal’skii A. M.: On the stabilization of an inverted pendulum with a fixed or moving suspension point. Dokl. Akad. Nauk, 406, 175–179 (2006)

    MathSciNet  Google Scholar 

  10. J. Hale, Ordinary Differential Equations, Wiley-Interscience (New York, 1969).

  11. Hatvani L.: An elementary method for the study of Meissner’s equation and its application to proving the Oscillation Theorem. Acta Sci. Math. (Szeged), 79, 87–105 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Haupt O.: Über eine Methode zum Bewise von Oszillationstheoremen. Math. Ann., 76, 67–104 (1914)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hill G. W.: On the part of the motion of the lunar perigee which is a function of the mean motions of the Sun and Moon. Acta Math., 8, 1–36 (1886)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hochstadt H.: A special Hill’s equation with discontinuous coefficients. Amer. Math. Monthly, 70, 18–26 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  15. P. L. Kapitsa, Dynamical stability of a pendulum when its point of suspension vibrates, in: Collected Papers by P. L. Kapitsa, vol. II, Pergamon Press (Oxford, 1965).

  16. Levi M.: Stability of the inverted pendulum – a topological explanation. SIAM Rev., 30, 639–644 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Levi M.: Geometry of Kapitsa’ potentials.. Nonlinearity, 11, 1365–1368 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Levi M., Weckesser W.: Stabilization of the inverted, linearized pendulum by high frequency vibrations. SIAM Rev., 37, 219–223 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. W. Magnus and S. Winkler, Hill’s equation, Dover Publications, Inc. (New York, 1979).

  20. D. R. Merkin, Introduction to the Theory of Stability, Springer-Verlag (New York, 1997).

  21. Seyranian A. A., Seyranian A. P.: The stability of an inverted pendulum with a vibrating suspension point. J. Appl. Math. Mech., 70, 754–761 (2006)

    Article  MathSciNet  Google Scholar 

  22. Stephenson A.: On a new type of dynamical stability. Manchester Memoirs, 52, 1–10 (1908)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Hatvani.

Additional information

Supported by the Hungarian National Foundation for Scientific Research (OTKA) K109782.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Csizmadia, L., Hatvani, L. On the existence of periodic motions of the excited inverted pendulum by elementary methods. Acta Math. Hungar. 155, 298–312 (2018). https://doi.org/10.1007/s10474-018-0835-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-018-0835-6

Key words and phrases

Mathematics Subject Classification

Navigation