Skip to main content
Log in

The IBMAP approach for Markov network structure learning

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

In this work we consider the problem of learning the structure of Markov networks from data. We present an approach for tackling this problem called IBMAP, together with an efficient instantiation of the approach: the IBMAP-HC algorithm, designed for avoiding important limitations of existing independence-based algorithms. These algorithms proceed by performing statistical independence tests on data, trusting completely the outcome of each test. In practice tests may be incorrect, resulting in potential cascading errors and the consequent reduction in the quality of the structures learned. IBMAP contemplates this uncertainty in the outcome of the tests through a probabilistic maximum-a-posteriori approach. The approach is instantiated in the IBMAP-HC algorithm, a structure selection strategy that performs a polynomial heuristic local search in the space of possible structures. We present an extensive empirical evaluation on synthetic and real data, showing that our algorithm outperforms significantly the current independence-based algorithms, in terms of data efficiency and quality of learned structures, with equivalent computational complexities. We also show the performance of IBMAP-HC in a real-world application of knowledge discovery: EDAs, which are evolutionary algorithms that use structure learning on each generation for modeling the distribution of populations. The experiments show that when IBMAP-HC is used to learn the structure, EDAs improve the convergence to the optimum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asuncion, A., Newman, D.J.: UCI machine learning repository (2007)

  2. Agresti, A.: Categorical Data Analysis, 2nd edn. Wiley (2002)

  3. Alden, M.: MARLEDA: Effective Distribution Estimation Through Markov Random Fields. Ph.D. thesis, Dept of CS University of Texas Austin (2007)

  4. Aliferis, C., Statnikov, A., Tsamardinos, I., Mani, S., Koutsoukos, X.: Local Causal and Markov Blanket induction for causal discovery and feature selection for classification part i: algorithms and empirical evaluation. JMLR 11, 171–234 (2010)

    MATH  MathSciNet  Google Scholar 

  5. Aliferis, C., Statnikov, A., Tsamardinos, I., Mani, S., Koutsoukos, X.: Local causal and Markov blanket induction for causal discovery and feature selection for classification part ii: analysis and extensions. JMLR 11, 235–284 (2010)

    MATH  MathSciNet  Google Scholar 

  6. Aliferis, C., Tsamardinos, I., Statnikov, A.: HITON, a novel Markov blanket algorithm for optimal variable selection. AMIA Fall (2003)

  7. Bromberg, F., Margaritis, D.: Improving the reliability of causal discovery from small data sets using argumentation. JMLR 10, 301–340 (2009)

    MATH  MathSciNet  Google Scholar 

  8. Bromberg, F., Margaritis, D., Honavar, V.: Efficient markov network structure discovery using independence tests. In: Proc SIAM Data Mining, p. 06 (2006)

  9. Bromberg, F., Margaritis, D., Honavar, V.: Efficient Markov network structure discovery using independence tests. JAIR 35, 449–485 (2009)

    MATH  MathSciNet  Google Scholar 

  10. Chickering, D.M.: Learning Bayesian networks is NP-Complete. In: Fisher, D., Lenz, H. (eds.) Learning from Data: Artificial Intelligence and Statistics V, pp. 121–130. Springer, Berlin (1996)

    Google Scholar 

  11. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience, New York (1991)

    Book  MATH  Google Scholar 

  12. Davis, J., Domingos, P.: Bottom-up learning of Markov network structure. In: ICML, pp. 271–278 (2010)

  13. Della Pietra, S., Della Pietra, V.J., Lafferty, J.D.: Inducing features of random fields. IEEE Trans. PAMI 19(4), 380–393 (1997)

    Article  Google Scholar 

  14. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. J. Comput. Biol., 601–620 (2000)

  15. Ganapathi, V., Vickrey, D., Duchi, J., Koller, D.: Constrained approximate maximum entropy learning of Markov random fields. In: Uncertainty in Artificial Intelligence, pp. 196–203 (2008)

  16. Hammersley, J.M., Clifford, P.: Markov fields on finite graphs and lattices (1968)

  17. Hettich, S., Bay, S.D. The UCI KDD archive (1999)

  18. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)

    Google Scholar 

  19. Larraṅaga, P., Lozano, J.A.: Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation. Kluwer, Norwell (2002)

    Book  Google Scholar 

  20. Lauritzen, S.L.: Graphical Models. Oxford University Press, New York (1996)

    Google Scholar 

  21. Lee, S.I., Ganapathi, V., Koller, D.: Efficient structure learning of Markov networks using L1-regularization. NIPS (2006)

  22. Li, S.: Markov Random Field Modeling in Image Analysis. Springer (2009)

  23. Margaritis, D.: Distribution-free learning of Bayesian network structure in continuous domains. In: Proceedings of AAAI (2005)

  24. Margaritis, D., Bromberg, F.: Efficient Markov network discovery using particle filter. Comput. Intell. 25(4), 367–394 (2009)

    Article  MathSciNet  Google Scholar 

  25. Margaritis, D., Thrun, S.: Bayesian network induction via local neighborhoods. In: Proceedings of NIPS06 (2000)

  26. McCallum, A.: Efficiently inducing features of conditional random fields. In: Proceedings of Uncertainty in Artificial Intelligence (UAI) (2003)

  27. Minka, T.: Divergence measures and message passing. Tech. rep. Microsoft Research (2005)

  28. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  29. Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of distributions I. Binary parameters. In: Voigt, H.M., Ebeling,W., Rechenberg, I., Schwefel, H.P. (eds.) Parallel Problem Solving from NaturePPSN IV. Lecture Notes in Computer Science, vol. 1141, pp. 178187. Springer, Berlin (1996). doi:10.1007/3-540-61723-X982

  30. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo (1988)

    Google Scholar 

  31. Ravikumar, P., Wainwright, M.J., Lafferty, J.D.: High-dimensional Ising model selection using L1-regularized logistic regression. Ann. Stat. 38, 1287–1319 (2010). doi:10.1214/09-AOS691

    Article  MATH  MathSciNet  Google Scholar 

  32. Santana, R.: Estimation of distribution algorithms with kikuchi approximations. Evol. Comput. 13(1), 67–97 (2005). doi:10.1162/1063656053583496

    Article  Google Scholar 

  33. Schlüter, F.: A survey on independence-based markov networks learning. Artif. Intell. Rev., 1–25 (2012). doi:10.1007/s10462-012-9346-y

  34. Shakya, S., McCall, J.: Optimization by estimation of distribution with deum framework based on Markov random fields. Int. J. Autom. Comput. 4(3), 262272. http://www.springerlink.com/index/10.1007/s11633-007-0262-6 (2007)

  35. Shakya, S., Santana, R., Lozano, J.A.: A markovianity based optimisation algorithm. Genet. Program Evolvable Mach. 13(2), 159–195 (2012)

    Article  Google Scholar 

  36. Schmidt, M., Murphy, K., Fung, G., Rosales, R.: Structure learning in random fields for heart motion abnormality detection. In: IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1–18. CVPR (2008). doi:http://www.cs.ubc.ca/~murphyk/Papers/cvpr08.pdf

  37. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search. Adaptive Computation and Machine Learning Series. MIT Press, Cambridge (2000)

    Google Scholar 

  38. Van Haaren, J., Davis, J.: Markov network structure learning: a randomized feature generation approach. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence. https://lirias.kuleuven.be/handle/123456789/345604 (2012)

  39. Van Haaren, J., Davis, J., Lappenschaar, M., Hommersom, A.: Exploring disease interactions using Markov networks. In: Proceedings of the AAAI-2013 (HIAI-2013). Bellevue, Washington, 15 July (2013)

  40. Wainwright, M.J., Jordan, M.I.: Graphical models, exponential families, and variational inference. Found. Trends Mach. Learn. 1(1–2), 1–305 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Schlüter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlüter, F., Bromberg, F. & Edera, A. The IBMAP approach for Markov network structure learning. Ann Math Artif Intell 72, 197–223 (2014). https://doi.org/10.1007/s10472-014-9419-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-014-9419-5

Keywords

Mathematics Subject Classifications (2010)

Navigation