Skip to main content
Log in

A circuit-level methodology for leakage power reduction of high-efficient compressors in 22-nm CMOS technology

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A new circuit-level methodology called input controlled leakage restrainer transistor (ICLRT) compatible with single threshold CMOS technology is proposed in this paper, to further discount the leakage and short-circuit powers. To implement this idea a PMOS ICLRT is placed on top of the PUN and an NMOS ICLRT is located at the bottom of the PDN for any path from the supply voltage and the ground to output. The ICLRTs can be deliberately applied to the main sources of leakage and short-circuit currents to reduce total power dissipation. To test the proposed technique, ICLRTs are applied to four 4-2 CMOS compressors. The efficiency of the proposed methodology is evaluated using SPICE simulations in 22-nm BSIM4 (level-54 parameters) CMOS technology. Simulation results with 0.9-V power supply revealed that the power consumption of the 4-2 CMOS compressors based on ICLRT technique is reduced 59.62–74.28% and also power-delay product (PDP) is diminished 32–46.78% relative to corresponding original designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Sanchez-Sinencio, E., & Andreou, A. G. (1999). Low-voltage/low-power integrated circuits. IEEE Press.

    Google Scholar 

  2. Narendra, S. G., & Chandrakasan, A. P. (2006). Leakage in nanometer CMOS technologies. Springer.

    Google Scholar 

  3. Shigemitsu, S., et al. (1997). A 1-V high-speed MTCMOS circuit scheme for power-down application circuits. IEEE Journal of Solid-State Circuits, 32(6), 861–869.

    Article  Google Scholar 

  4. Wei, L., Chen, Z., Roy, K., Johnson, M. C., Ye, Y., & De, V. K. (1999). Design and optimization of dual-threshold circuits for low-voltage low-power applications. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 7(1), 16–24.

    Article  Google Scholar 

  5. Zhang, K., et al. (2005). SRAM design on 65-nm CMOS technology with dynamic sleep transistor for leakage reduction. IEEE Journal of Solid-State Circuits, 40(4), 895–901.

    Article  Google Scholar 

  6. Sathanur, A., Benini, L., Macii, A., Macii, E., & Poncino, M. (2011). Row-based power-gating: A novel sleep transistor insertion methodology for leakage power optimization in nanometer CMOS circuits. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 19(3), 469–482.

    Article  Google Scholar 

  7. Mishra, J. K., Srivastava, H., Misra, P. K., & Goswami, M. (2019). Analytical modelling and design of 9T SRAM cell with leakage control technique. Analog Integrated Circuits and Signal Processing, 101, 31–43.

    Article  Google Scholar 

  8. Kuroda, T., et al. (1996). A 0.9-V, 150MHz, 10-mW, 4 mm2, 2-D discrete cosine transform core processor with variable threshold-voltage (VT) scheme. IEEE Journal of Solid-State Circuits, 31(11), 1770–1779.

    Article  Google Scholar 

  9. Cserveny, S., Sumanen, L., Masgonty, J.-M., & Piguet, Ch. (2005). Locally switched and limited source-body bias and other leakage reduction techniques for a low-power embedded SRAM. IEEE Transactions on Circuits and Systems II, 52(10), 636–640.

    Article  Google Scholar 

  10. Abdollahi, A., Fallah, F., & Pedram, M. (2004). Leakage current reduction in CMOS VLSI circuits by input vector control. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 12(2), 140–154.

    Article  Google Scholar 

  11. Yuan, L., & Qu, G. (2006). A combined gate replacement and input vector control approach for leakage current reduction. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 14(2), 173–182.

    Article  Google Scholar 

  12. Hanchate, N., & Ranganathan, N. (2004). LECTOR: A technique for leakage reduction in CMOS circuits. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 12(2), 196–205.

    Article  Google Scholar 

  13. Bajpai, P., Pandey, N., Gupta, K., & Panda, J. (2019). LECTOR incorporated differential cascode voltage swing logic (L-DCVSL). Analog Integrated Circuits and Signal Processing, 100, 221–234.

    Article  Google Scholar 

  14. Srikanth, K., & Dhireesha, K. (2008). GALEOR: Leakage reduction for CMOS circuit. In Proceedings of 15th IEEE international conference on electronics circuits and systems (pp. 574–577).

  15. Cerqueira, J. P., Li, J., & Seok, M. (2018). A fW- and kHz-class feed-forward leakage self-suppression logic requiring no external sleep signal to enter the leakage suppression mode. IEEE Solid-State Circuits Letters, 1(6), 150–153.

    Article  Google Scholar 

  16. Sharma, V. K., Pattanaik, M., & Raj, B. (2013). ONOFIC approach: Low power high speed nanoscale VLSI circuits design. International Journal of Electronics, 101(1), 61–73.

    Article  Google Scholar 

  17. Thapliyal, H., Mohammad, A., Kumar, S. D., & Sharifi, F. (2017). Energy-efficient magnetic 4-2 compressor. Microelectronics Journal, 67, 1–9.

    Article  Google Scholar 

  18. Akbari, O., Kamal, M., Afzali-Kusha, A., & Pedram, M. (2017). Dual-quality 4:2 compressors for utilizing in dynamic accuracy configurable multipliers. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(4), 1352–1361.

    Article  Google Scholar 

  19. Aliparast, P., et al. (2011). A very high-speed CMOS 4-2 compressor using fully differential current-mode circuit techniques. Analog Integrated Circuits and Signal Processing, 66, 235–243.

    Article  Google Scholar 

  20. Chang, C.-H., Gu, J., & Zhang, M. (2004). Ultra low-voltage low-power CMOS 4–2 and 5–2 compressors for fast arithmetic circuits. IEEE Transactions on Circuits and Systems I, 51(10), 1985–1997.

    Article  Google Scholar 

  21. Pishvaie, A., Jaberipur, Gh., & Jahanian, A. (2012). Improved CMOS (4;2) compressor designs for parallel multipliers. Computers and Electrical Engineering, 38, 1703–1716.

    Article  Google Scholar 

  22. Pishvaie, A., Jaberipur, Gh., & Jahanian, A. (2014). High-performance CMOS (4:2) compressors. International Journal of Electronics, 101(11), 1511–1525.

    Article  Google Scholar 

  23. http://bsim.berkeley.edu/models/bsim4.

  24. Maryan, M. M., Amini-Valashani, M., & Azhari, S. J. (2021). A new circuit-level technique for leakage and short-circuit power reduction of static logic gates in 22-nm CMOS technology. Circuits, Systems, and Signal Processing, 40, 3536–3560.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Moradinezhad Maryan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maryan, M.M., Azhari, S.J. & Amini-Valashani, M. A circuit-level methodology for leakage power reduction of high-efficient compressors in 22-nm CMOS technology. Analog Integr Circ Sig Process 110, 569–581 (2022). https://doi.org/10.1007/s10470-021-01983-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-021-01983-z

Keywords

Navigation