Skip to main content
Log in

Digital calibration of pipelined ADC using Newton–Raphson algorithm

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a new digital background calibration method to correct MDAC errors. The novelty of this research is to use Newton–Raphson algorithm in order to reduce the number of divisions as well as power in digital domain. This is achieved by combining the conventional slope mismatch averaging and linear approximation technique to compute the correction coefficient in fast iterative method. To validate the accuracy of the proposed method, the digital part of the calibration scheme is implemented on FPGA. The superiorities of the proposed method are fast convergence time, less power consumption, and less digital complexity in compared to previous studies. These benefits are due to using split structure along with Newton–Raphson method. Several simulations of a 12-bit 100MS/s pipelined ADC indicate that SNDR/SFDR is improved from 30/33 dB to 70/79 dB after calibration. Calibration process is achieved in approximately 2000 clock cycles. The proposed ADC achieves a FoM of 0.03-pJ/conversion-step and consumes an analog power of 6.7 mW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Jalali-Farahani, B., & Meruva, A. (2009). A 14-b 32 MS/s pipelined ADC with fast convergence comprehensive background calibration. Analog Integr Circuits Signal Process,61(1), 65–74.

    Article  Google Scholar 

  2. Jia, H., & Lv, Y. (2016). A calibration technique based on sub-stages’ weights of pipelined ADC. Analog Integr Circuits Signal Process,89(1), 223–229.

    Article  Google Scholar 

  3. Larsson, A., Silva-Martinez, J., & Soenen, E. (2014). A 360 fJ/conversion-step, 14-bit, 100 MS/s, digitally background calibrated pipelined ADC in 130-nm CMOS. Analog Integr Circuits Signal Process,81(1), 153–164.

    Article  Google Scholar 

  4. Chen, Z.-H., Wu, H., Zhang, H., Wei, J.-H., Su, X., Xue, Y., et al. (2019). A 14-bit 250-MS/s charge-domain pipelined ADC with mix-signal foreground calibration. Analog Integr Circuits Signal Process,101(2), 283–295.

    Article  Google Scholar 

  5. Li, J., & Moon, U.-K. (2003). Background calibration techniques for multistage pipelined ADCs with digital redundancy. IEEE Trans Circuits Syst II Analog Digital Signal Process,50(9), 531–538.

    Article  Google Scholar 

  6. Adel, H., Louerat, M.-M., & Sabut, M. (2012). Fast split background calibration for pipelined ADCs enabled by slope mismatch averaging technique. Electronics Letters,48(6), 318–320.

    Article  Google Scholar 

  7. Mafi, H. R., & Sodagar, A. M. (2013). A background calibration in pipelined ADCs. AEU-Int J Electron Commun,67(8), 729–732.

    Article  Google Scholar 

  8. Shi, L., Zhao, W., Wu, J., & Chen, C. (2012). Digital background calibration techniques for pipelined ADC based on comparator dithering. IEEE Trans Circuits Syst II Exp Briefs,59(4), 239–243.

    Article  Google Scholar 

  9. Siragusa, E., & Galton, I. (2000). Gain error correction technique for pipelined analogue-to-digital converters. Electronics Letters,36(7), 1.

    Article  Google Scholar 

  10. Ming, J., & Lewis, S. H. (2001). An 8-bit 80-Msample/s pipelined analog-to-digital converter with background calibration. IEEE Journal of Solid-State Circuits,36(10), 1489–1497.

    Article  Google Scholar 

  11. Panigada, A., & Galton, I. (2006). Digital background correction of harmonic distortion in pipelined ADCs. IEEE Trans Circuits Syst I Regular Pap,53(9), 1885–1895.

    Article  Google Scholar 

  12. Mafi, H., Mohammadi, R., & Shamsi, H. (2015). A statistics-based digital background calibration technique for pipelined ADCs. Integr VLSI J,51, 149–157.

    Article  Google Scholar 

  13. McNeill, J. A., Coln, M. C., Brown, D. R., & Larivee, B. J. (2009). Digital background-calibration algorithm for “Split ADC” architecture. IEEE Trans Circuits Syst I Regular Pap,56(2), 294–306.

    Article  MathSciNet  Google Scholar 

  14. Ahmed, I., & Johns, D. A. (2008). An 11-Bit 45 MS/s pipelined ADC with rapid calibration of DAC errors in a multibit pipeline stage. IEEE Journal of Solid-State Circuits,43(7), 1626–1637.

    Article  Google Scholar 

  15. Montazerolghaem, M. A., Moosazadeh, T., & Yavari, M. (2015). A predetermined LMS digital background calibration technique for pipelined ADCs. IEEE Transactions on Circuits and Systems II: Express Briefs,62(9), 841–845.

    Article  Google Scholar 

  16. Zia, E., Farshidi, E., & Kosarian, A. (2019). A split-based digital background calibration of pipelined analog-to-digital converters by cubic spline interpolation filtering. Circuits, Syst Signal Process,38(10), 1–18.

    Article  Google Scholar 

  17. Shen D-L, Lee T-C (2005) A linear-approximation technique for digitally-calibrated pipelined A/D converters. In: 2005 IEEE international symposium on circuits and systems, IEEE, pp 1382–1385

  18. Sahoo, B. D., & Razavi, B. (2013). A 10-b 1-GHz 33-mW CMOS ADC. IEEE Journal of Solid-State Circuits,48(6), 1442–1452.

    Article  Google Scholar 

  19. Sahoo, B. D., & Razavi, B. (2009). A 12-bit 200-MHz cmos adc. IEEE Journal of Solid-State Circuits,44(9), 2366–2380.

    Article  Google Scholar 

  20. Fatemi-Behbahani, E., Farshidi, E., & Ansari-Asl, K. (2016). Analysis of chaotic behavior in pipelined analog to digital converters. AEU-Int J Electron Commun,70(3), 301–310.

    Article  Google Scholar 

  21. Gautschi, W. (1997). Numerical analysis. New York: Springer.

    MATH  Google Scholar 

  22. Chang, D.-Y. (2004). Design techniques for a pipelined ADC without using a front-end sample-and-hold amplifier. IEEE Trans Circuits Syst I Regular Pap,51(11), 2123–2132.

    Article  Google Scholar 

  23. Moosazadeh, T., & Yavari, M. (2014). A pseudo-differential MDAC with a gain-boosting inverter for pipelined ADCs. Analog Integr Circuits Signal Process,79(2), 255–266.

    Article  Google Scholar 

  24. Sumanen L, Waltari M, Hakkarainen V, Halonen K (2002) CMOS dynamic comparators for pipeline A/D converters. In: 2002 IEEE international symposium and proceedings on circuits and systems (Cat. No. 02CH37353), vol 5, IEEE, p V

  25. Gholami, P., & Yavari, M. (2018). Digital background calibration with histogram of decision points in pipelined ADCs. IEEE Trans Circuits Syst II: Exp Briefs,65(1), 16–20.

    Article  Google Scholar 

  26. Mafi, H., Yargholi, M., & Yavari, M. (2018). Statistics-based digital background calibration of residue amplifier nonlinearity in pipelined ADCs. IEEE Trans Circuits Syst I: Regular Pap,99, 1–13.

    Google Scholar 

  27. Zeinali, B., Moosazadeh, T., Yavari, M., & Rodriguez-Vazquez, A. (2013). Equalization-based digital background calibration technique for pipelined ADCs. IEEE Trans Very Large Scale Integr (VLSI) Syst,22(2), 322–333.

    Article  Google Scholar 

  28. Walden, R. H. (1999). Analog-to-digital converter survey and analysis. IEEE Journal on Selected Areas in Communications,17(4), 539–550.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Zia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zia, E., Farshidi, E. & Kosarian, A. Digital calibration of pipelined ADC using Newton–Raphson algorithm. Analog Integr Circ Sig Process 104, 61–70 (2020). https://doi.org/10.1007/s10470-020-01659-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01659-0

Keywords

Navigation