Skip to main content

Advertisement

Log in

The plaque-aortic ring assay: a new method to study human atherosclerosis-induced angiogenesis

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Progression of atherosclerotic plaques into life-threatening lesions is associated with angiogenesis which contributes to intraplaque hemorrhages and plaque instability. The lack of adequate models for the study of human plaque-induced angiogenesis has limited progress in this field. We describe here a novel ex vivo model which fills this gap. Plaques obtained from 15 patients who underwent endarterectomy procedures were co-cultured in collagen gels with rat aorta rings which served as read-out of human plaque angiogenic activity. The majority of plaque fragments markedly stimulated angiogenic sprouting from the aortic rings while concurrently promoting the outgrowth of resident macrophages from the aortic adventitia. This stimulatory activity correlated with the presence of intraplaque macrophages. Proteomic analysis of plaque secretomes revealed heterogeneity of macrophage-stimulatory cytokine and angiogenic factor production by different plaques. VEGF was identified in some of the plaque secretomes. Antibody-mediated blockade of VEGF had significant but transient inhibitory effect on angiogenesis, which suggested redundancy of plaque-derived angiogenic stimuli. Pharmacologic ablation of adventitial macrophages permanently impaired the angiogenic response of aortic rings to plaque stimuli. Our results show that human plaque-induced angiogenesis can be reproduced ex vivo using rat aortic rings as read-out of plaque angiogenic activity. This model can be used to identify key cellular and molecular mechanisms responsible for the neovascularization of human plaques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, Finkelstein EA, Hong Y, Johnston SC, Khera A, Lloyd-Jones DM, Nelson SA, Nichol G, Orenstein D, Wilson PW et al (2011) Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 123:933–944

    Article  PubMed  Google Scholar 

  2. Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK, Farb A, Guerrero LJ, Hayase M, Kutys R, Narula J, Finn AV, Virmani R (2003) Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 349:2316–2325

    Article  CAS  PubMed  Google Scholar 

  3. Falke P, Matzsch T, Sternby NH, Bergqvist D, Stavenow L (1995) Intraplaque haemorrhage at carotid artery surgery—a predictor of cardiovascular mortality. J Intern Med 238:131–135

    Article  CAS  PubMed  Google Scholar 

  4. Saam T, Hatsukami TS, Takaya N, Chu B, Underhill H, Kerwin WS, Cai J, Ferguson MS, Yuan C (2007) The vulnerable, or high-risk, atherosclerotic plaque: noninvasive MR imaging for characterization and assessment. Radiology 244:64–77

    Article  PubMed  Google Scholar 

  5. Michel JB, Virmani R, Arbustini E, Pasterkamp G (2011) Intraplaque haemorrhages as the trigger of plaque vulnerability. Eur Heart J 32:1977–1985, 1985a, 1985b, 1985c

  6. Davies MJ, Thomas AC (1985) Plaque fissuring—the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br Heart J 53:363–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, Wrenn SP, Narula J (2005) Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 25:2054–2061

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Y, Cliff WJ, Schoefl GI, Higgins G (1993) Immunohistochemical study of intimal microvessels in coronary atherosclerosis. Am J Pathol 143:164–172

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Michel JB, Thaunat O, Houard X, Meilhac O, Caligiuri G, Nicoletti A (2007) Topological determinants and consequences of adventitial responses to arterial wall injury. Arterioscler Thromb Vasc Biol 27:1259–1268

    Article  CAS  PubMed  Google Scholar 

  10. Jeziorska M, Woolley DE (1999) Neovascularization in early atherosclerotic lesions of human carotid arteries: its potential contribution to plaque development. Hum Pathol 30:919–925

    Article  CAS  PubMed  Google Scholar 

  11. Ho-Tin-Noe B, Michel JB (2011) Initiation of angiogenesis in atherosclerosis: smooth muscle cells as mediators of the angiogenic response to atheroma formation. Trends Cardiovasc Med 21:183–187

    Article  CAS  PubMed  Google Scholar 

  12. Hatsukami TS, Ferguson MS, Beach KW, Gordon D, Detmer P, Burns D, Alpers C, Strandness DE Jr (1997) Carotid plaque morphology and clinical events. Stroke 28:95–100

    Article  CAS  PubMed  Google Scholar 

  13. Nicosia RF (2009) The aortic ring model of angiogenesis: a quarter century of search and discovery. J Cell Mol Med 13:4113–4136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nicosia RF, Zhu WH, Fogel E, Howson KM, Aplin AC (2005) A new ex vivo model to study venous angiogenesis and arterio-venous anastomosis formation. J Vasc Res 42:111–119

    Article  PubMed  Google Scholar 

  15. Aplin AC, Fogel E, Zorzi P, Nicosia RF (2008) The aortic ring model of angiogenesis. Methods Enzymol 443:119–136

    Article  CAS  PubMed  Google Scholar 

  16. Gelati M, Aplin AC, Fogel E, Smith KD, Nicosia RF (2008) The angiogenic response of the aorta to injury and inflammatory cytokines requires macrophages. J Immunol 181:5711–5719

    Article  CAS  PubMed  Google Scholar 

  17. Ligresti G, Aplin AC, Zorzi P, Morishita A, Nicosia RF (2011) Macrophage-derived tumor necrosis factor-alpha is an early component of the molecular cascade leading to angiogenesis in response to aortic injury. Arterioscler Thromb Vasc Biol 31:1151–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schneider CA, Rasband WS, Eliceiri KW (2018) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  19. Zhu WH, Guo X, Villaschi S, Francesco NR (2000) Regulation of vascular growth and regression by matrix metalloproteinases in the rat aorta model of angiogenesis. Lab Invest 80:545–555

    Article  CAS  PubMed  Google Scholar 

  20. Aplin AC, Zhu WH, Fogel E, Nicosia RF (2009) Vascular regression and survival are differentially regulated by MT1-MMP and TIMPs in the aortic ring model of angiogenesis. Am J Physiol Cell Physiol 297:C471–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kurachi K, Davie EW, Strydom DJ, Riordan JF, Vallee BL (1985) Sequence of the cDNA and gene for angiogenin, a human angiogenesis factor. Biochemistry 24:5494–5499

    Article  CAS  PubMed  Google Scholar 

  22. Rosen EM, Goldberg ID (1995) Scatter factor and angiogenesis. Adv Cancer Res 67:257–279

    Article  CAS  PubMed  Google Scholar 

  23. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309

    Article  CAS  PubMed  Google Scholar 

  24. Song H, Yin D, Liu Z (2012) GDF-15 promotes angiogenesis through modulating p53/HIF-1a signaling pathway in hypoxic human umbilical vein endothelial cells. Mol Biol Rep 39:4017–4022

    Article  CAS  PubMed  Google Scholar 

  25. Cohen T, Nahari D, Cerem LW, Neufeld G, Levi BZ (1996) Interleukin 6 induces the expression of vascular endothelial growth factor. J Biol Chem 271:736–741

    Article  CAS  PubMed  Google Scholar 

  26. Hu DE, Hori Y, Fan TP (1993) Interleukin-8 stimulates angiogenesis in rats. Inflammation 17:135–143

    Article  CAS  PubMed  Google Scholar 

  27. Salcedo R, Ponce ML, Young HA, Wasserman K, Ward JM, Kleinman HK, Oppenheim JJ, Murphy WJ (2000) Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood 96:34–40

    CAS  PubMed  Google Scholar 

  28. Asare Y, Schmitt M, Bernhagen J (2013) The vascular biology of macrophage migration inhibitory factor (MIF). Expression and effects in inflammation, atherogenesis and angiogenesis. Thromb Haemost 109:391–398

    Article  CAS  PubMed  Google Scholar 

  29. Liekens S, Schols D, Hatse S (2018) CXCL12-CXCR4 axis in angiogenesis, metastasis and stem cell mobilization. Curr Pharm Des 16:3903–3920

    Article  Google Scholar 

  30. Nicosia RF, Nicosia SV, Smith M (1994) Vascular endothelial growth factor, platelet-derived growth factor, and insulin-like growth factor-1 promote rat aortic angiogenesis in vitro. Am J Pathol 145:1023–1029

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Movahedi B, Gysemans C, Jacobs-Tulleneers-Thevissen D, Mathieu C, Pipeleers D (2008) Pancreatic duct cells in human islet cell preparations are a source of angiogenic cytokines interleukin-8 and vascular endothelial growth factor. Diabetes 57:2128–2136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gopinathan G, Milagre C, Pearce OM, Reynolds LE, Hodivala-Dilke K, Leinster DA, Zhong H, Hollingsworth RE, Thompson R, Whiteford JR, Barger AC (2015) Interleukin-6 stimulates defective angiogenesis. Cancer Res 75:3098–3107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aplin AC, Fogel E, Nicosia RF (2010) MCP-1 promotes mural cell recruitment during angiogenesis in the aortic ring model. Angiogenesis 13:219–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Salcedo R, Wasserman K, Young HA, Grimm MC, Howard OM, Anver MR, Kleinman HK, Murphy WJ, Oppenheim JJ (1999) Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: in vivo neovascularization induced by stromal-derived factor-1alpha. Am J Pathol 154:1125–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aplin AC, Gelati M, Fogel E, Carnevale E, Nicosia RF (2006) Angiopoietin-1 and vascular endothelial growth factor induce expression of inflammatory cytokines before angiogenesis. Physiol Genomics 27:20–28

    Article  CAS  PubMed  Google Scholar 

  36. Martinet W, Schrijvers DM, De Meyer GR (2011) Necrotic cell death in atherosclerosis. Basic Res Cardiol 106:749–760

    Article  CAS  PubMed  Google Scholar 

  37. Parma L, Baganha F, Quax PHA, de Vries MR (2017) Plaque angiogenesis and intraplaque hemorrhage in atherosclerosis. Eur J Pharmacol 816:107–115

    Article  CAS  PubMed  Google Scholar 

  38. Barger AC, Beeuwkes R, Lainey LL, Silverman KJ (1984) Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med 310:175–177

    Article  CAS  PubMed  Google Scholar 

  39. Guo L, Harari E, Virmani R, Finn AV (2017) Linking hemorrhage, angiogenesis, macrophages, and iron metabolism in atherosclerotic vascular diseases. Arterioscler Thromb Vasc Biol 37:e33–e39

    Article  CAS  PubMed  Google Scholar 

  40. Li Y, Zhu Y, Deng Y, Liu Y, Mao Y, Sun J (2016) The therapeutic effect of bevacizumab on plaque neovascularization in a rabbit model of atherosclerosis during contrast-enhanced ultrasonography. Sci Rep 6:30417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Guo L, Akahori H, Harari E, Smith SL, Polavarapu R, Karmali V, Otsuka F, Gannon RL, Braumann RE, Dickinson MH, Gupta A, Jenkins AL, Lipinski MJ, Kim J, Chhour P et al (2018) CD163+ macrophages promote angiogenesis and vascular permeability accompanied by inflammation in atherosclerosis. J Clin Invest 128:1106–1124

    Article  PubMed  PubMed Central  Google Scholar 

  42. Olson FJ, Stromberg S, Hjelmgren O, Kjelldahl J, Fagerberg B, Bergstrom GM (2011) Increased vascularization of shoulder regions of carotid atherosclerotic plaques from patients with diabetes. J Vasc Surg 54:1324–1331

    Article  PubMed  Google Scholar 

  43. Zorzi P, Aplin AC, Smith KD, Nicosia RF (2010) Technical advance: the rat aorta contains resident mononuclear phagocytes with proliferative capacity and proangiogenic properties. J Leukoc Biol 88:1051–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang J, Wang Y, Wang J, Guo X, Chan EC, Jiang F (2018) Adventitial activation in the pathogenesis of injury-induced arterial remodeling: potential implications in transplant vasculopathy. Am J Pathol 188:838–845

    Article  CAS  PubMed  Google Scholar 

  45. Boyle JJ, Harrington HA, Piper E, Elderfield K, Stark J, Landis RC, Haskard DO (2009) Coronary intraplaque hemorrhage evokes a novel atheroprotective macrophage phenotype. Am J Pathol 174:1097–1108

    Article  PubMed  PubMed Central  Google Scholar 

  46. Finn AV, Nakano M, Polavarapu R, Karmali V, Saeed O, Zhao X, Yazdani S, Otsuka F, Davis T, Habib A, Narula J, Kolodgie FD, Virmani R (2012) Hemoglobin directs macrophage differentiation and prevents foam cell formation in human atherosclerotic plaques. J Am Coll Cardiol 59:166–177

    Article  CAS  PubMed  Google Scholar 

  47. Bo WJ, Murcuri M, Tucker R, Bond MG (2018) The human carotid atherosclerotic plaque stimulates angiogenesis on the chick chorioallantoic membrane. Atherosclerosis 94:71–79

    Article  Google Scholar 

  48. Alpern-Elran H, Morog N, Robert F, Hoover G, Kalant N, Brem S (2018) Angiogenic activity of the atherosclerotic carotid artery plaque. J Neurosurg 70:942–945

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grant-in-aid (17GRNT33410141) from the American Heart Association and by the VA Puget Sound Health Care System. The contents of this paper do not represent the views of the U.S. Department of Veteran Affairs or the United States Government. We gratefully acknowledge the support of the Vascular Surgery Team of VA Puget Sound Health Care System for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto F. Nicosia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were performed with approval from the Veterans Administration Puget Sound Health Care System Institutional Review Board and comply with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Research involving animal rights

All animal procedures were performed with approval from the Veterans Administration Puget Sound Health Care System Institutional Animal Care and Use Committee and followed National Institutes of Health Guidelines.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10456_2019_9667_MOESM1_ESM.jpg

Supplement 1 Densitometric analysis of dot blots of conditioned media obtained from human plaques and reacted for angiogenic factors and cytokines/chemokines. Plaque numbers (1, 2, 4, 5, 6, 7, 8) identify the same plaques used in the angiogenesis assay shown in Fig. 1c. Quantitative protein analysis was performed by normalizing the intensity of each analyte to internal reference controls. Note that there is significant heterogeneity in the relative levels of analytes in tested samples (see also Fig. 2) (JPEG 1931 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aplin, A.C., Nicosia, R.F. The plaque-aortic ring assay: a new method to study human atherosclerosis-induced angiogenesis. Angiogenesis 22, 421–431 (2019). https://doi.org/10.1007/s10456-019-09667-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-019-09667-z

Keywords

Navigation