Skip to main content
Log in

Defining Characteristics of Angiogenesis Regulation in Advanced Human Carotid Plaques

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Increased neovascularization of the atherosclerotic plaque promotes plaque vulnerability, atherosclerosis progression, and increased risk of complications, including myocardial infarction and ischemic stroke. The aim of our study was a comprehensive assessment of the expression of multidirectional regulatory factors of angiogenesis in a carotid atherosclerotic plaque. The study included 33 patients with atherosclerotic carotid stenosis exceeding 60%, who were exposed to carotid endarterectomy followed by pathomorphological examination of removed atherosclerotic plaques throughout their length. The structure of plaques, the number of microvessels per 1 cm2 of the plaque, as well as the expression of vascular endothelial growth factors (VEGFA, VEGFB, VEGFC, and VEGFD) and their receptors (VEGFR1, VEGFR2, VEGFR3), FGF2, PDGF-B, and TSP-1) were assessed using histological and immunohistochemical methods followed by a correlation analysis. According to histological examination, 13 plaques were referred to atheromatous (type Va), 12 to complicated, with either fibrous cap ulceration or massive intraplaque haemorrhage (type VI), 6 to calcified (type Vb), and 2 to fibrous (type Vc). Neovessels were found in all plaques (267.5 vessels/1 cm2 [140.9; 534.8]). Most of the neovessels had a highly permeable phenotype with such features as the compromised endothelial integrity, lack of the pericyte layer, and perivascular hemorrhage. VEGFD was overexpressed, significantly prevailing over the other assessed factors (p < 0.001). The pronounced expression of VEGFA, VEGFR2, VEGFR3, FGF2 and PDGF-B was also found in plaques. Immunoreactivity to VEGFB, VEGFC and TSP-1 was the least, with VEGFR1 detected in trace amounts. The number of plaque microvessels significantly correlated with the expression of VEGFA, VEGFD, FGF2, PDGF-B and VEGFR2 (p < 0.01). Other structural components of the plaque did not correlate with the level of angiogenic factors therein. Thus, we demonstrated a pronounced proangiogenic expression profile of various angiogenic factors in association with a failure of the neovasculature stabilization mechanism in advanced human carotid atherosclerotic plaques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Camaré C, Pucelle M, Nègre-Salvayre A, Salvayre R (2017) Angiogenesis in the atherosclerotic plaque. Redox Biol 12:18–34. https://doi.org/10.1016/j.redox.2017.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sedding DG, Boyle EC, Demandt JAF, Sluimer JC, Dutzmann J, Haverich A, Bauersachs J (2018) Vasa Vasorum Angiogenesis: Key Player in the Initiation and Progression of Atherosclerosis and Potential Target for the Treatment of Cardiovascular Disease. Front Immunol 9:706. https://doi.org/10.3389/fimmu.2018.00706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Van der Veken B, De Meyer GR, Martinet W (2016) Intraplaque neovascularization as a novel therapeutic target in advanced atherosclerosis. Expert Opin Ther Targets 20:1247–1257. https://doi.org/10.1080/14728222.2016.1186650

    Article  CAS  PubMed  Google Scholar 

  4. Sluimer JC, Kolodgie FD, Bijnens APJJ, Maxfield K, Pacheco E, Kutys B, Duimel H, Frederik PM, van Hinsbergh VWM, Virmani R, Daemen MJAP (2009) Thin-Walled Microvessels in Human Coronary Atherosclerotic Plaques Show Incomplete Endothelial Junctions. J Am Coll Cardiol 53:1517–1527. https://doi.org/10.1016/j.jacc.2008.12.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Parma L, Baganha F, Quax PHA, de Vries MR (2017) Plaque angiogenesis and intraplaque hemorrhage in atherosclerosis. Eur J Pharmacol 816:107–115. https://doi.org/10.1016/j.ejphar.2017.04.028

    Article  CAS  PubMed  Google Scholar 

  6. Mao Y, Liu X, Song Y, Zhai C, Zhang L (2018) VEGF-A/VEGFR-2 and FGF-2/FGFR-1 but not PDGF-BB/PDGFR-β play important roles in promoting immature and inflammatory intraplaque angiogenesis. PLoS One 13:e0201395. https://doi.org/10.1371/journal.pone.0201395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jeziorska M, Woolley DE (1999) Neovascularization in early atherosclerotic lesions of human carotid arteries: Its potential contribution to plaque development. Hum Pathol 188:189–196. https://doi.org/10.1016/S0046-8177(99)90245-9

    Article  CAS  Google Scholar 

  8. Kashiwazaki D, Koh M, Uchino H, Akioka N, Kuwayama N, Noguchi K, Kuroda S (2018) Hypoxia accelerates intraplaque neovascularization derived from endothelial progenitor cells in carotid stenosis. J Neurosurg 131:884–891. https://doi.org/10.3171/2018.4.JNS172876

    Article  PubMed  Google Scholar 

  9. Adams JC, Lawler J (2004) The thrombospondins. Int J Biochem Cell Biol 36:961–968. https://doi.org/10.1016/j.biocel.2004.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jia T, Jacquet T, Dalonneau F, Coudert P, Vaganay E, Exbrayat-Héritier C, Vollaire J, Josserand V, Ruggiero F, Coll J-L, Eymin B (2021) FGF-2 promotes angiogenesis through a SRSF1/SRSF3/SRPK1-dependent axis that controls VEGFR1 splicing in endothelial cells. BMC Biol 19:173. https://doi.org/10.1186/s12915-021-01103-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mao Y, Liu XQ, Song Y, Zhai CG, Xu XL, Zhang L, Zhang Y (2020) Fibroblast growth factor-2/platelet-derived growth factor enhances atherosclerotic plaque stability. J Cell Mol Med 24:1128–1140. https://doi.org/10.1111/jcmm.14850

    Article  CAS  PubMed  Google Scholar 

  12. Simons M, Gordon E, Claesson-Welsh L (2016) Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol 17:611–625. https://doi.org/10.1038/nrm.2016.87

    Article  CAS  PubMed  Google Scholar 

  13. Perrotta P, Emini Veseli B, Van der Veken B, Roth L, Martinet W, De Meyer GRY (2019) Pharmacological strategies to inhibit intra-plaque angiogenesis in atherosclerosis. Vascul Pharmacol 112:72–78. https://doi.org/10.1016/j.vph.2018.06.014

    Article  CAS  PubMed  Google Scholar 

  14. Stary HC (2000) Natural History and Histological Classification of Atherosclerotic Lesions. Arterioscler Thromb Vasc Biol 20:1177–1178. https://doi.org/10.1161/01.ATV.20.5.1177

    Article  CAS  PubMed  Google Scholar 

  15. Camaré C, Pucelle M, Nègre-Salvayre A, Salvayre R (2017) Angiogenesis in the atherosclerotic plaque. Redox Biol 12:18–34. https://doi.org/10.1016/j.redox.2017.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou Y, Zhu X, Cui H, Shi J, Yuan G, Shi S, Hu Y (2021) The Role of the VEGF Family in Coronary Heart Disease. Front Cardiovasc Med 8:738325. https://doi.org/10.3389/fcvm.2021.738325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Melincovici CS, Boşca AB, Şuşman S, Mărginean M, Mihu C, Istrate M, Moldovan IM, Roman AL, Mihu CM (2018) Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Rom J Morphol Embryol 59:455–467. http://www.ncbi.nlm.nih.gov/pubmed/30173249

    PubMed  Google Scholar 

  18. Pelisek J, Well G, Reeps C, Rudelius M, Kuehnl A, Culmes M, Poppert H, Zimmermann A, Berger H, Eckstein H-H (2012) Neovascularization and angiogenic factors in advanced human carotid artery stenosis. Circ J 76:1274–1282. https://doi.org/10.1253/circj.cj-11-0768

    Article  CAS  PubMed  Google Scholar 

  19. Chanakira A, Dutta R, Charboneau R, Barke R, Santilli SM, Roy S (2012) Hypoxia differentially regulates arterial and venous smooth muscle cell proliferation via PDGFR-β and VEGFR-2 expression. Am J Physiol Heart Circ Physiol 302:H1173–H1184. https://doi.org/10.1152/ajpheart.00411.2011

    Article  CAS  PubMed  Google Scholar 

  20. Roy H, Bhardwaj S, Babu M, Kokina I, Uotila S, Ahtialansaari T, Laitinen T, Hakumaki J, Laakso M, Herzig K-H, Ylä-Herttuala S (2006) VEGF-A, VEGF-D, VEGF receptor-1, VEGF receptor-2, NF-kappaB, and RAGE in atherosclerotic lesions of diabetic Watanabe heritable hyperlipidemic rabbits. FASEB J 20:2159–2161. https://doi.org/10.1096/fj.05-5029fje

    Article  CAS  PubMed  Google Scholar 

  21. Claesson-Welsh L (2016) VEGF receptor signal transduction—A brief update. Vascul Pharmacol 2001: re21. https://doi.org/10.1126/stke.2001.112.re21

    Article  Google Scholar 

  22. Stacker SA, Achen MG (2018) Emerging Roles for VEGF-D in Human Disease. Biomolecules 8:1. https://doi.org/10.3390/biom8010001

    Article  CAS  PubMed Central  Google Scholar 

  23. Rutanen J, Leppänen P, Tuomisto TT, Rissanen TT, Hiltunen MO, Vajanto I, Niemi M, Häkkinen T, Karkola K, Stacker SA, Achen MG, Alitalo K, Ylä-Herttuala S (2003) Vascular endothelial growth factor-D expression in human atherosclerotic lesions. Cardiovasc Res 59:971–979. https://doi.org/10.1016/s0008-6363(03)00518-2

    Article  CAS  PubMed  Google Scholar 

  24. Zhao T, Zhao W, Meng W, Liu C, Chen Y, Bhattacharya SK, Sun Y (2016) Vascular endothelial growth factor-D mediates fibrogenic response in myofibroblasts. Mol Cell Biochem 413:127–135. https://doi.org/10.1007/s11010-015-2646-1

    Article  CAS  PubMed  Google Scholar 

  25. Engelmann D, Mayoli-Nüssle D, Mayrhofer C, Fürst K, Alla V, Stoll A, Spitschak A, Abshagen K, Vollmar B, Ran S, Pützer BM (2013) E2F1 promotes angiogenesis through the VEGF-C/VEGFR-3 axis in a feedback loop for cooperative induction of PDGF-B. J Mol Cell Biol 5:391–403. https://doi.org/10.1093/jmcb/mjt035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu J, Sun F, Wang X, Bi Q (2020) miR-27b promotes angiogenesis and skin repair in scalded rats through regulating VEGF-C expression. Lasers Med Sci 35:1577–1588. https://doi.org/10.1007/s10103-020-02991-7

    Article  PubMed  Google Scholar 

  27. Zarkada G, Heinolainen K, Makinen T, Kubota Y, Alitalo K (2015) VEGFR3 does not sustain retinal angiogenesis without VEGFR2. Proc Natl Acad Sci U S A 112:761–766. https://doi.org/10.1073/pnas.1423278112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nilsson I, Bahram F, Li X, Gualandi L, Koch S, Jarvius M, Söderberg O, Anisimov A, Kholová I, Pytowski B, Baldwin M, Ylä-Herttuala S, Alitalo K, Kreuger J, Claesson-Welsh L (2010) VEGF receptor 2/-3 heterodimers detected in situ by proximity ligation on angiogenic sprouts. EMBO J 29:1377–1388. https://doi.org/10.1038/emboj.2010.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen R, Lee C, Lin X, Zhao C, Li X (2019) Novel function of VEGF-B as an antioxidant and therapeutic implications. Pharmacol Res 143:33–39. https://doi.org/10.1016/j.phrs.2019.03.002

    Article  CAS  PubMed  Google Scholar 

  30. Fallah A, Sadeghinia A, Kahroba H, Samadi A, Heidari HR, Bradaran B, Zeinali S, Molavi O (2019) Therapeutic targeting of angiogenesis molecular pathways in angiogenesis-dependent diseases. Biomed Pharmacother 110:775–785. https://doi.org/10.1016/j.biopha.2018.12.022

    Article  CAS  PubMed  Google Scholar 

  31. Dolivo DM, Larson SA, Dominko T (2017) Fibroblast Growth Factor 2 as an Antifibrotic: Antagonism of Myofibroblast Differentiation and Suppression of Pro-Fibrotic Gene Expression. Cytokine Growth Factor Rev 38:49–58. https://doi.org/10.1016/j.cytogfr.2017.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Presta M, Dell’Era P, Mitola S, Moroni E, Ronca R, Rusnati M (2005) Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 16:159–178. https://doi.org/10.1016/j.cytogfr.2005.01.004

    Article  CAS  PubMed  Google Scholar 

  33. Chen P, Qin L, Li G, Tellides G, Simons M (2016) Smooth muscle FGF/TGFβ cross talk regulates atherosclerosis progression. EMBO Mol Med 8:712–728. https://doi.org/10.15252/emmm.201506181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tillie RJHA, Theelen TL, van Kuijk K, Temmerman L, de Bruijn J, Gijbels M, Betsholtz C, Biessen EAL, Sluimer JC (2021) A Switch from Cell-Associated to Soluble PDGF-B Protects against Atherosclerosis, despite Driving Extramedullary Hematopoiesis. Cells 10: 1746. https://doi.org/10.3390/cells10071746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Laddha AP, Kulkarni YA (2019) VEGF and FGF-2: Promising targets for the treatment of respiratory disorders. Respir Med 156:33–46. https://doi.org/10.1016/j.rmed.2019.08.003

    Article  PubMed  Google Scholar 

  36. Margosio B, Marchetti D, Vergani V, Giavazzi R, Rusnati M, Presta M, Taraboletti G (2003) Thrombospondin 1 as a scavenger for matrix-associated fibroblast growth factor 2. Blood 102:4399–4406. https://doi.org/10.1182/blood-2003-03-0893

    Article  CAS  PubMed  Google Scholar 

  37. Heldin CH, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79:1283–1316. https://doi.org/10.1152/physrev.1999.79.4.1283

    Article  CAS  PubMed  Google Scholar 

  38. Papadopoulos N, Lennartsson J (2018) The PDGF/PDGFR pathway as a drug target. Mol Aspects Med 62:75–88. https://doi.org/10.1016/j.mam.2017.11.007

    Article  CAS  PubMed  Google Scholar 

  39. Greenberg JI, Shields DJ, Barillas SG, Acevedo LM, Murphy E, Huang J, Scheppke L, Stockmann C, Johnson RS, Angle N, Cheresh DA (2008) A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature 456:809–813. https://doi.org/10.1038/nature07424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Greenaway J, Lawler J, Moorehead R, Bornstein P, Lamarre J, Petrik J (2007) Thrombospondin-1 inhibits VEGF levels in the ovary directly by binding and internalization via the low density lipoprotein receptor-related protein-1 (LRP-1). J Cell Physiol 210:807–818. https://doi.org/10.1002/jcp.20904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ganguly R, Sahu S, Ohanyan V, Haney R, Chavez RJ, Shah S, Yalamanchili S, Raman P (2017) Oral chromium picolinate impedes hyperglycemia-induced atherosclerosis and inhibits proatherogenic protein TSP-1 expression in STZ-induced type 1 diabetic ApoE-/- mice. Sci Rep 7:45279. https://doi.org/10.1038/srep45279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was implemented within the state assignment to the Research Center of Neurology for basic scientific research.

Author information

Authors and Affiliations

Authors

Contributions

A.N.E.—conceptualization, experimental design, data collection and processing, writing a manuscript; K.N.K.—data collection and processing, writing a manuscript; T.S.G.—conceptualization and experimental design, writing and editing a manuscript; M.M.T.—conceptualization and experimental design, writing and editing a manuscript.

Corresponding author

Correspondence to A. N. Evdokimenko.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have neither evident nor potential conflict of interest associated with the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2022, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2022, Vol. 108, No. 5, pp. 649–666https://doi.org/10.31857/S0869813922050041.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evdokimenko, A.N., Kulichenkova, K.N., Gulevskaya, T.S. et al. Defining Characteristics of Angiogenesis Regulation in Advanced Human Carotid Plaques. J Evol Biochem Phys 58, 825–840 (2022). https://doi.org/10.1134/S0022093022030164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022030164

Keywords:

Navigation