Skip to main content

Advertisement

Log in

Metagenomic characterisation of bioaerosols during the dry season in Mexico City

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Air pollution in urban areas is one of the main problems because of its effects on human health and the environment. The levels of critical pollutants such as ozone and airborne particles and their impacts on human health have been widely studied, neglecting the microbiological communities present in the air, which alone or in combination with chemical contaminants can have detrimental effects on human health. In this study, we employed a metagenomic approach to characterise the bacterial and fungal communities, using 16S rRNA and the internal transcribed spacer region of the nuclear ribosomal RNA. The study took place in Mexico City during the dry season, at days with high levels of ozone and suspended particles (March 14 to 18, 2016). We found a total of 147 bacterial genera, of which the most abundant ones were Microbispora (9%), Paracoccus (6%), Exiguobacterium (6%), Kocuria (3.0%), Friedmanniella (3%), Rubellimicrobium (2%), Sphingomonas (2%) and Methylobacterium (2%). We also found a total of 211 fungal genera, mainly Cladosporium (26%), Phoma (15%), Aureobasidium (11%) and Cryptococcus (3%). Some bacterial and fungal genera reported in this study have been reported as a cause of allergic, respiratory or infectious diseases. Our findings may serve as a reference for further monitoring of pathogens present in the air during periods with high levels of ozone and airborne particles, studying their distribution patterns and evaluating the possible combined effects of those particles and pollutants as a risk factor for the health of the general population.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2 
Fig. 3 
Fig. 4 
Fig. 5 

Similar content being viewed by others

References

  • Amador-Muñoz, O., Bazán-Torija, S., Villa-Ferreira, S. A., Villalobos-Pietrini, R., Bravo-Cabrera, J. L., Munive-Colín, Z., et al. (2013). Opposing seasonal trends for polycyclic aromatic hydrocarbons and PM10: Health risk and sources in southwest Mexico City. Atmospheric research, 122, 199–212.

    Article  Google Scholar 

  • Babich, H., & Lighthart, B. (1974). Air pollution and microbial ecology. C R C Critical Reviews in Environmental Control, 4(1–4), 353–421. https://doi.org/10.1080/10643387409381619.

    Article  Google Scholar 

  • Baldacci, S., Maio, S., Cerrai, S., Sarno, G., Baïz, N., Simoni, M., et al. (2015). Allergy and asthma: Effects of the exposure to particulate matter and biological allergens. Respiratory Medicine, 109(9), 1089–1104. https://doi.org/10.1016/j.rmed.2015.05.017.

    Article  CAS  Google Scholar 

  • Bauer, R. N., Diaz-Sanchez, D., & Jaspers, I. (2012). Effects of air pollutants on innate immunity: The role of Toll-like receptors and nucleotide-binding oligomerization domain-like receptors. Journal of Allergy and Clinical Immunology, 129(1), 14–24. https://doi.org/10.1016/j.jaci.2011.11.004.

    Article  CAS  Google Scholar 

  • Behzad, H., Gojobori, T., & Mineta, K. (2015). Challenges and opportunities of airborne metagenomics. Genome Biology and Evolution, 7(5), 1216–1226. https://doi.org/10.1093/gbe/evv064.

    Article  CAS  Google Scholar 

  • Blaalid, R., Kumar, S., Nilsson, R. H., Abarenkov, K., Kirk, P. M., & Kauserud, H. (2013). ITS 1 versus ITS 2 as DNA metabarcodes for fungi. Molecular Ecology Resources, 13(2), 218–224.

    Article  CAS  Google Scholar 

  • Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170.

    Article  CAS  Google Scholar 

  • Brook, R. D., Rajagopalan, S., Pope, C. A., 3rd, Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., et al. (2010). Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation, 121(21), 2331–2378. https://doi.org/10.1161/CIR.0b013e3181dbece1.

    Article  CAS  Google Scholar 

  • Calderón-Ezquerro, M. C., Guerrero-Guerra, C., Galán, C., Serrano-Silva, N., Guidos-Fogelbach, G., Jiménez-Martínez, M. C., et al. (2018). Pollen in the atmosphere of Mexico City and its impact on the health of the pediatric population. Atmospheric Environment, 186, 198–208.

    Article  Google Scholar 

  • Calderón-Ezquerro, M. C., Guerrero-Guerra, C., Martínez-López, B., Fuentes-Rojas, F., Téllez-Unzueta, F., López-Espinoza, E. D., et al. (2016). First airborne pollen calendar for Mexico City and its relationship with bioclimatic factors. Aerobiologia, 32(2), 225–244.

    Article  Google Scholar 

  • Calderon, C., Lacey, J., & Rosas, I. (1997). Influence of urban climate upon distribution of airborne Deuteromycete spore concentrations in Mexico City. International Journal of Meteorology, 40, 71–80.

    Google Scholar 

  • Cao, C., Jiang, W., Wang, B., Fang, J., Lang, J., Tian, G., et al. (2014). Inhalable microorganisms in Beijing's PM2.5 and PM10 pollutants during a severe smog event. Environmental Science and Technology, 48(3), 1499–1507. https://doi.org/10.1021/es4048472.

    Article  CAS  Google Scholar 

  • Chirino, Y. I., Sánchez-Pérez, Y., Osornio-Vargas, Á. R., Rosas, I., & García-Cuellar, C. M. (2015). Sampling and composition of airborne particulate matter (PM10) from two locations of Mexico City. Data in Brief, 4, 353–356.

    Article  Google Scholar 

  • Douwes, J., Thorne, P., Pearce, N., & Heederik, D. (2003). Bioaerosol health effects and exposure assessment: Progress and prospects. Annals of Occupational Hygiene, 47(3), 187–200. https://doi.org/10.1093/annhyg/meg032.

    Article  CAS  Google Scholar 

  • Du, P., Du, R., Ren, W., Lu, Z., & Fu, P. (2018). Science of the Total Environment Seasonal variation characteristic of inhalable microbial communities in PM 2.5 in Beijing city China. Science of the Total Environment, 610–611, 308–315. https://doi.org/10.1016/j.scitotenv.2017.07.097.

    Article  CAS  Google Scholar 

  • Earl, C. S., An, S. Q., & Ryan, R. P. (2015). The changing face of asthma and its relation with microbes. Trends in Microbiology, 23(7), 408–418. https://doi.org/10.1016/j.tim.2015.03.005.

    Article  CAS  Google Scholar 

  • Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26(19), 2460–2461. https://doi.org/10.1093/bioinformatics/btq461.

    Article  CAS  Google Scholar 

  • Fröhlich-Nowoisky, J., Kampf, C. J., Weber, B., Huffman, J. A., Pöhlker, C., Andreae, M. O., et al. (2016). Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmospheric Research, 182, 346–376. https://doi.org/10.1016/j.atmosres.2016.07.018.

    Article  CAS  Google Scholar 

  • Gangamma, S. (2014). Characteristics of airborne bacteria in Mumbai urban environment. Science of the Total Environment, 488–489(1), 70–74. https://doi.org/10.1016/j.scitotenv.2014.04.065.

    Article  CAS  Google Scholar 

  • García-Mena, J., Murugesan, S., Pérez-Muñoz, A. A., García-Espitia, M., Maya, O., Jacinto-Montiel, M., et al. (2016). Airborne bacterial diversity from the low atmosphere of greater Mexico City. Microbial Ecology, 72(1), 70–84.

    Article  Google Scholar 

  • Guerreiro, C., Foltescu, V., & de Leeuw, F. (2013). Air quality status and trends in Europe. Atmospheric Environment, 98, 376–384. https://doi.org/10.2800/92843.

    Article  Google Scholar 

  • Hawksworth, D. L., & Lücking, R. (2017). Fungal diversity revisited: 2.2 to 3.8 million species. Microbiology Spectrum. https://doi.org/10.1128/microbiolspec.FUNK-0052-2016.

    Article  Google Scholar 

  • Herlemann, D. P. R., Labrenz, M., Jürgens, K., Bertilsson, S., Waniek, J. J., & Andersson, A. F. (2011). Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME Journal, 5(10), 1571–1579. https://doi.org/10.1038/ismej.2011.41.

    Article  CAS  Google Scholar 

  • Humbal, C., Gautam, S., & Trivedi, U. (2018). A review on recent progress in observations and health effects of bioaerosols. Environment International, 118, 189–193.

    Article  CAS  Google Scholar 

  • INEGI (Instituto Nacional de Estadística y Geografía) (2015). http://www.paot.org.mx/centro/inegi/ambdf/condic.html.

  • Jaenicke, R. (2005). Abundance of cellular material and proteins in the atmosphere. Science, 308(5718), 73. https://doi.org/10.1126/science.1106335.

    Article  CAS  Google Scholar 

  • Janssen, N. A., Brunekreef, B., & van Vliet, P. (2003). The relationship between air pollution from heavy traffic and allergic sensitization, bronchial hyperresponsiveness, and respiratory symptoms in Dutch schoolchildren. Environmental Health Perspectives, 111, 1512–1518.

    Article  Google Scholar 

  • Kim, Y. K., Moon, J. S., Song, K. E., & Lee, W. K. (2016). Two cases of bacteremia due to Roseomonas mucosa. Annals of laboratory medicine, 36(4), 367–370.

    Article  CAS  Google Scholar 

  • Lacey, M. E., & West, J. S. (2006). The air spora: A manual for catching and identifying airborne biological particles. Dordrecht, The Netherlands: Springer.

    Book  Google Scholar 

  • Manzano-León, N., Quintana, R., Sánchez, B., Serrano, J., Vega, E., Vázquez-López, I., ÓNeill, M. S., Vadillo-Ortega, F., Vizcaya-Ruiz, A., Rosas, I., & Osornio-Vargas, A. R. (2013). Variation in the composition and in vitro proinflammatory effect of urban particulate matter from different sites. Journal of Biochemical and Molecular Toxicology, 27(1), 87–97.

    Article  Google Scholar 

  • May, R. C., Stone, N. R. H., Wiesner, D. L., Bicanic, T., & Nielsen, K. (2015). Cryptococcus: From environmental saprophyte to global pathogen. Nature Reviews Microbiology, 21(14), 106. https://doi.org/10.1038/nrmicro.2015.6.

    Article  CAS  Google Scholar 

  • Molfino, N. A., Wright, S. C., Katz, I., Tarlo, S., Silverman, F., McClean, P. A., et al. (1991). Effect of low concentrations of ozone on inhaled allergen responses in asthmatic subjects. The Lancet, 338(8761), 199–203.

    Article  CAS  Google Scholar 

  • Monn, C., & Becker, S. (1999). Cytotoxicity and induction of proinflammatory cytokines from human monocytes exposed to fine (PM 2.5) and coarse particles (PM10 – 2.5) in outdoor and indoor air. Toxicology and Applied Pharmacology, 252, 245–252.

    Article  Google Scholar 

  • Mugica-Álvarez, V., Figueroa-Lara, J., Romero-Romo, M., Sepúlveda-Sánchez, J., & López-Moreno, T. (2012). Concentrations and properties of airborne particles in the Mexico City subway system. Atmospheric Environment, 49, 284–293.

    Article  Google Scholar 

  • Nilsson, R. H., Ryberg, M., Abarenkov, K., Sjökvist, E., & Kristiansson, E. (2009). The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiology Letters, 296, 97–101. https://doi.org/10.1111/j.1574-6968.2009.01618.x.

    Article  CAS  Google Scholar 

  • Ning, Y., Imrich, A., Goldsmith, C. A., Qin, G., & Kobzik, L. (2000). Alveolar macrophage cytokine production in response to air particles in vitro: Role of endotoxin. Journal of Toxicology and Environmental Health - Part A, 59(3), 165–180. https://doi.org/10.1080/009841000156952.

    Article  CAS  Google Scholar 

  • Oh, S. Y., Fong, J. J., Park, M. S., Chang, L., & Lim, Y. W. (2014). Identifying airborne fungi in Seoul, Korea, using metagenomics. Journal of Microbiology, 52(6), 465–472. https://doi.org/10.1007/s12275-014-3550-1.

    Article  CAS  Google Scholar 

  • Polymenakou, P. N. (2012). Atmosphere: A source of pathogenic or beneficial microbes? Atmosphere, 3(1), 87–102.

    Article  Google Scholar 

  • Riojas-Rodríguez, H., Álamo-Hernández, U., Texcalac-Sangrador, J. L., & Romieu, I. (2014). Health impact assessment of decreases in PM10 and ozone concentrations in the Mexico City Metropolitan Area. A basis for a new air quality management program. Salud pública de México, 56(6), 579–591.

    Article  Google Scholar 

  • Rosales-Castillo, J. A., Torres-Meza, V. M., Olaiz-Fernández, G., & Borja-Aburto, V. H. (2001). Los efectos agudos de la contaminación del aire en la salud de la población: Evidencias de estudios epidemiológicos. Salud pública de México, 43, 544–555.

    Article  CAS  Google Scholar 

  • Rosas, I., Calderon, C., Salinas, E., & Lacey, J. (1996). Airborne microorganisms in a domestic waste transfer station. In M. L. Muilenberg & H. A. Burge (Eds.), Aerobiology: Proceedings of the Pan-American aerobiology association (pp. 89–98). Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Rosas, I., McCartney, H. A., Payne, R. W., Calderon, C., Lacey, J., Chapela, R., et al. (1998). Analysis of the relationships between environmental factors (aeroallergens, air pollution, and weather) and asthma emergency admissions to a hospital in Mexico City. Aerobiologia, 13, 23. https://doi.org/10.1007/BF02694787.

    Article  Google Scholar 

  • Rosas, I., Salinas, E., Yela, A., Calva, E., Eslava, C., & Cravioto, A. (1997). Escherichia coli in settled-dust and air samples collected in residential environments in Mexico City. Applied Environmental Microbiology, 63, 4093–4095.

    Article  CAS  Google Scholar 

  • Santos-Burgoa, C., Rosas, I., & Yela, A. (1994). Occurrence of airborne enteric bacteria in Mexico City. Aerobiologia, 10, 39–45. https://doi.org/10.1007/BF02066745.

    Article  Google Scholar 

  • Seaton, A., Soutar, A., Crawford, V., Elton, R., McNerlan, S., Cherrie, J., et al. (1999). Particulate air pollution and the blood. Thorax, 54, 1027–1032.

    Article  CAS  Google Scholar 

  • SEDEMA (Secretaría del Medio Ambiente) (2016). www.aire.cdmx.gob.mx/descargas/.../normatividad/NADF-009-AIRE-2006.pdf

  • Serrano-Silva, N., & Calderon-Ezquerro, M. C. (2018). Metagenomic survey of bacterial diversity in the atmosphere of Mexico City using different sampling methods. Environmental Pollution, 235, 20–29.

    Article  CAS  Google Scholar 

  • Shen, X. J., Sun, J. Y., Zhang, Y. M., Wehner, B., Nowak, A., Tuch, T., et al. (2011). First long-term study of particle number size distributions and new particle formation events of regional aerosol in the North China Plain. Atmospheric Chemistry and Physics, 11(4), 1565–1580. https://doi.org/10.5194/acp-11-1565-2011.

    Article  CAS  Google Scholar 

  • Srikanth, P., Sudharsanam, S., & Steinberg, R. (2008). Bio-aerosols in the indoor environment: composition, health effects, and analysis. Indian Journal of Medical Microbiology, 26(4), 302.

    Article  Google Scholar 

  • Toju, H., Tanabe, A. S., Yamamoto, S., & Sato, H. (2012). High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE. https://doi.org/10.1371/journal.pone.0040863.

    Article  Google Scholar 

  • Valavanidis, A., Fiotakis, K., & Vlachogianni, T. (2008). Airborne particulate matter and human health: Toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. Journal of Environmental Science and Health - Part C Environmental Carcinogenesis and Ecotoxicology Reviews, 26(4), 339–362. https://doi.org/10.1080/10590500802494538.

    Article  CAS  Google Scholar 

  • Villalobos-Pietrini, R., Amador-Munoz, O., Valle-Hernández, B., Gomez-Arroyo, S., & Waliszewski, S. (2011). Organic compound in airborne particles and their genottoxic effects in Mexico City. In N. Mazzeo (Ed.), Air quality monitoring, assessment, and management. London: IntechOpen.

    Google Scholar 

  • Villalobos-Pietrini, R., Amador-Muñoz, O., Waliszewski, S., Hernández-Mena, L., Munive-Colín, Z., Gómez-Arroyo, S., et al. (2006). Mutagenicity and polycyclic aromatic hydrocarbons associated with extractable organic matter from airborne particles ⩽ 10 μm in southwest Mexico City. Atmospheric Environment, 40(30), 5845–5857.

    Article  CAS  Google Scholar 

  • Villalobos-Pietrini, R., Blanco, S., & Gomez-Arroyo, S. (1995). Mutagenicity assessment of airborne particles in Mexico City. Atmospheric Environment, 29(4), 517–524.

    Article  CAS  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols A guide to methods and applications (pp. 315–322). New York: Academic Press.

    Google Scholar 

  • WHO (World Health Organization) (2003). Health aspects of air pollution with particulate matter, ozone, and nitrogen dioxide: report on a WHO working group, Bonn, Germany 13–15 January 2003 (No. EUR/03/5042688). Copenhagen: WHO Regional Office for Europe.

  • WHO (World Health Organization) (2005). How air pollution is destroying our health. https://www.who.int/air-pollution/news-and-events/how-air-pollution-is-destroying-our-health

  • WHO (World Health Organization) (2019). Air pollution and health: Summary. https://www.who.int/airpollution/ambient/about/en/.

  • Yan, D., Zhang, T., Su, J., Zhao, L. L., Wang, H., Fang, X. M., et al. (2016). Diversity and composition of airborne fungal community associated with particulate matters in Beijing during haze and non-haze days. Frontiers in Microbiology, 7, 487. https://doi.org/10.3389/fmicb.2016.00487.

    Article  Google Scholar 

  • Zukiewicz-Sobczak, W. A. (2013). The role of fungi in allergic diseases. Postepy Dermatologii i Alergologii, 30(1), 42–45. https://doi.org/10.5114/pdia.2013.33377.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Cesar Guerrero Guerra, Miguel Angel Meneses, Wilfrido Gutiérrez López, Manuel Garcia Espinosa and Ana Rosa Flores Márquez from the Centro de Ciencias de la Atmósfera, UNAM, for technical assistance. The authors also thank to Daniel Peña Maziel for the image of Mexico City. Brunner-Mendoza C. thanks the postdoctoral scholarship (2017–2019) awarded by DGAPA, UNAM.

Funding

This work was funded by the “Secretaría de Ciencia y Tecnología e Innovación de la Ciudad de México” (SECITI/050/2016; SECITI/057/2017) and the “Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica” (PAPIIT) (IN229016), UNAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Calderón-Ezquerro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Taxonomic distribution of airborne bacteria in Mexico City collected during the dry season (March 2016) in Mexico City. (HTML 261 kb)

Fig. S2

Taxonomic distribution of airborne fungi in Mexico City collected during the dry season (March 2016) in Mexico City. (HTML 270 kb)

Supplementary file3 (DOCX 149 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calderón-Ezquerro, M.C., Serrano-Silva, N. & Brunner-Mendoza, C. Metagenomic characterisation of bioaerosols during the dry season in Mexico City. Aerobiologia 36, 493–505 (2020). https://doi.org/10.1007/s10453-020-09649-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-020-09649-5

Keywords

Navigation