Skip to main content
Log in

An analysis of the exposure time to very high concentrations of Cladosporium conidia in the air of an urban site

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Cladosporium spp. is a ubiquitous mould present both in indoor and outdoor environments and affecting a wide array of substrates. It is considered to be the second most important fungal aeroallergen in countries of temperate climates, after Alternaria species. In order to establish the time of exposure to very high concentrations of Cladosporium conidia by sensitised individuals, a 5-year study was undertaken in the UK in a densely populated area using a volumetric air sampler. Weather data, comprised air temperature, precipitation, relative humidity and wind speed were collected simultaneously. Cladosporium showed a mono-modal pattern with the majority of conidia observed between 09:30 and 19:00 as indicated by descriptive statistics and multivariate regression tree analysis. On the other hand, circular statistics showed that the maximum hourly concentrations were found within 1.5-h window before 09:30. The highest conidia concentrations were observed when dry conditions occurred (40–55%). The maximum temperature associated with peak concentrations was oscillating within the range of 20–25 °C. All findings were confirmed using Kruskal–Wallis, Friedman and sign tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams, K. F. (1964). Year to year variations in the fungus spore content of the atmosphere. Acta Allergologica, 19, 11–50.

    Article  CAS  Google Scholar 

  • Alves, C., Duarte, M., Ferreira, M., Alves, A., Almeida, A., & Cunha, Â. (2016). Air quality in a school with dampness and mould problems. Air Quality, Atmosphere and Health, 9, 107–115.

    Article  CAS  Google Scholar 

  • Bensch, K., Braun, U., Groenewald, J. Z., & Crous, P. W. (2012). The genus Cladosporium. Studies in Mycology, 72, 1–401.

    Article  CAS  Google Scholar 

  • Bousquet, P.-J., Hooper, R., Kogevinasw, M., Jarvis, D., & Burney, P. (2007). Number of allergens to be tested to assess allergenic sensitization in epidemiologic studies: results of the European Community Respiratory Health Survey I. Clinical and Experimental Allergy, 37, 780–787.

    Article  Google Scholar 

  • Bouziane, H., Latgé, J. P., Fitting, C., Mecheri, S., Lelong, M., & David, B. (2005). Comparison of the allergenic potency of spores and mycelium of Cladosporium. Allergologia et Immunopathologia, 33, 125–130.

    Article  CAS  Google Scholar 

  • Bräse, S., Encinas, A., Keck, J., & Nising, C. F. (2009). Chemistry and biology of mycotoxins and related fungal metabolites. Chemical Reviews, 109, 3903–3990.

    Article  Google Scholar 

  • Breitenbach, M., & Simon-Nobbe, B. (2002). The allergens of Cladosporium herbarum and Alternaria alternata. In M. Breitenbach, R. Crameri, & S. B. Lehrer (Eds.), Fungal allergy and pathogenicity (pp. 48–72). Basel: Krager.

    Chapter  Google Scholar 

  • Byung Uk, L. (2010). Effect of vibration on dispersal of Cladosporium cladosporioides bioaerosols. Journal of Microbiology and Biotechnology, 20(5), 904–907.

    Article  Google Scholar 

  • Calderón, C., Lacey, J., McCartney, A., & Rosas, I. (1997). Influence of urban climate distribution of airborne Deuteromycete spore concentrations in Mexico City. International Journal of Biometeorology, 40, 71–80.

    Article  Google Scholar 

  • Crous, P. W., Braun, U., Schubert, K., & Groenewald, J. Z. (2007). Delimiting Cladosporium from morphologically similar genera. Studies in Mycology, 58, 33–56.

    Article  CAS  Google Scholar 

  • D’Amato, G., & Spieksma, F. T. M. (1995). Aerobiologic and clinical aspects of mould allergy in Europe. Allergy, 50, 870–877.

    Article  Google Scholar 

  • Davies, R. R. (1959). Detachment of conidia by cloud droplets. Nature, 4676, 1695.

    Article  Google Scholar 

  • De’ath, G., & Fabricius, K. E. (2000). Classification and regression trees: A powerful and yet simple technique for ecological data analysis. Ecology, 81, 3178–3192.

    Article  Google Scholar 

  • Denning, D. W., Pashley, C., Hartl, D., Wardlaw, A., Godet, C., Del Giacco, S., et al. (2014). Fungal allergy in asthma–state of the art and research needs. Clin Transl Allergy, 4, 14.

    Article  Google Scholar 

  • Ellis, M. B. (1971). Dematiaceous Hyphomycetes. London: The Eastern Press Ltd.

    Google Scholar 

  • Fernández, D., Valencia, R. M., Molnár, T., Vega, A., & Sagüés, E. (1998). Daily and seasonal variations of Alternaria and Cladosporium airborne spores in Leon (North-West, Spain). Aerobiologia, 14, 215–220.

    Article  Google Scholar 

  • Frankland, A. W., & Davies, R. R. (1965). Allergie aux spores de moisissures en Angleterre. Poumon Coeur, 21, 11–23.

    CAS  Google Scholar 

  • Fromme, H., Gareis, M., Völkel, W., & Gottschalk, C. (2016). Overall internal exposure to mycotoxins and their occurrence in occupational and residential settings – An overview. International Journal of Hygiene and Environmental Health, 219, 143–165.

    Article  CAS  Google Scholar 

  • Fukutomi, Y., & Taniguchi, M. (2015). Sensitization to fungal allergens: Resolved and unresolved issues. Allergol Int, 64, 321–331.

    Article  CAS  Google Scholar 

  • Gravesen, S. (1979). Fungi as a cause of allergic diseases. Allergy, 34, 135–154.

    Article  CAS  Google Scholar 

  • Gregory, P. H., & Stedman, O. J. (1958). Spore dispersal in Ophiobolus graminis and other fungi of cereal foot rots. Trans Brit Mycol Soc, 41, 449.

    Article  Google Scholar 

  • Grinn-Gofroń, A., & Strzelczak, A. (2013). Changes in concentrations of Alternaria and Cladosporium spores during summer storms. International Journal of Biometeorology, 57, 759–768.

    Article  Google Scholar 

  • Hirst, J. (1952). An automatic volumetric spore trap. Ann Appl Biol, 39, 257–265.

    Article  Google Scholar 

  • Horner, W. E., Helbling, A., Salvaggio, J. E., & Lehrer, S. B. (1995). Fungal allergens. Clinical Microbiology Reviews, 8, 161–179.

    CAS  Google Scholar 

  • Ianovici, N., Popescu, A., & Nemeş, C. (2008). Aeromycological monitoring of Cladosporium spores in Timişoara. Annals of West University of Timişoara, 11, 1–8.

    Google Scholar 

  • Jäger, S. (2003). Plant taxonomy and nomenclature. Postęp Derm Alergol, 20, 218–226.

    Google Scholar 

  • König, H., Unden, G., & Fröhlich, J. (Eds.). (2009). Biology of microorganisms on grapes, in must and in wine. Heidelberg: Springer.

    Google Scholar 

  • Kurkela, T. (1997). The number of Cladosporium conidia in the air in different weather conditions. Grana, 36, 54–61.

    Article  Google Scholar 

  • Lacey, J. (1996). Spore dispersal – its role in ecology and disease: the British contribution to fungal aerobiology. Mycological Research, 100, 641–660.

    Article  Google Scholar 

  • Lacey, M. E., & West, J. (2006). The air spora. A manual for catching and identifying airborne biological particles. Dordrecht: Springer.

    Google Scholar 

  • Mediavilla Molina, A., Angulo Romero, J., Infante García-Pantaleón, F., Comtois, P., & Domínguez Vilches, E. (1998). Preliminary statistical modeling of the presence of two conidial types of Cladosporium in the atmosphere of Córdoba, Spain. Aerobiologia, 14, 229–234.

    Article  Google Scholar 

  • Nilsson, S., & Persson, S. (1981). Tree pollen spectra in the Stockholm region (Sweden), 1973-1980. Grana, 20, 179–182.

    Article  Google Scholar 

  • Pady, S. M., Kramer, C. L., & Clary, R. (1969). Periodicity in spore release in Cladosporium. Mycologia, 61, 87–98.

    Article  Google Scholar 

  • Pasanen, A.-L., Pasanen, P., Jantunen, M. J., & Kalliokoski, P. (1991). Significance of air humidity and air velocity for fungal spore release into the air. Atmospheric Environment, 25A, 459–462.

    Article  Google Scholar 

  • Pashley, C. H., Fairs, A., Free, R. C., & Wardlaw, A. J. (2012). DNA analysis of outdoor air reveals a high degree of fungal diversity, temporal variability, and genera not seen by spore morphology. Fungal biol, 116, 214–224.

    Article  CAS  Google Scholar 

  • Peternel, R., Čulig, J., & Hrga, I. (2004). Atmospheric concentrations of Cladosporium spp. and Alternaria spp. spores in Zagreb (Croatia) and effects of some meteorological factors. AAEM, 11, 303–307.

    Google Scholar 

  • Ranta, H., & Pessi, A.-M. (2006). Pollen Bulletin Summary 2005. Finnish Pollen Bulletin, 30, 1–12.

    Google Scholar 

  • Rapiejko, P., Lipiec, A., Wojadas, A., & Jurkiewicz, D. (2004). Threshold pollen concentration necessary to evoke allergic symptoms. Internat. Rev. Allergol Clin Immunol, 10, 91–94.

    Google Scholar 

  • Reponen, T., Willeke, K., Ulevicius, V., Reponen, A., & Grinshpun, S. A. (1996). Effect of relative humidity on the aerodynamic diameter and respiratory deposition of fungal spores. Atmospheric Environment, 30, 3967–3974.

    Article  CAS  Google Scholar 

  • Rich, S., & Waggoner, P. E. (1962). Atmospheric concentration of Cladosporium spores. Science, 137, 962–965.

    Article  CAS  Google Scholar 

  • Rodríguez-Rajo, F. J., Iglesias, I., & Jato, V. (2005). Variation assessment of airborne Alternaria and Cladosporium spores at different bioclimatical conditions. Mycological Research, 109, 497–507.

    Article  Google Scholar 

  • Sabariego, S., Díaz de la Guardia, C., & Alba, F. (2000). The effect of meteorological factors on the daily variation of airborne fungal spores in Granada (southern Spain). International Journal of Biometeorology, 44, 1–5.

    Article  CAS  Google Scholar 

  • Sadyś, M., Adams-Groom, B., Herbert, R. J., & Kennedy, R. (2016). Comparisons of fungal spore distributions using air sampling at Worcester, England (2006–2010). Aerobiologia, 32, 619–634.

    Article  Google Scholar 

  • Shaheen, I. (1992). Aeromycology of Amman area, Jordan. Grana, 31, 223–228.

    Article  Google Scholar 

  • Sindt, C., Besancenot, J.-P., & Thibaudon, M. (2016). Airborne Cladosporium fungal spores and climate change in France. Aerobiologia, 32, 53–68.

    Article  Google Scholar 

  • Stępalska, D., & Wołek, J. (2009). Intradiurnal periodicity of fungal spores concentrations (Alternaria, Botrytis, Cladosporium, Didymella, Ganoderma) in Cracow, Poland. Aerobiologia, 25, 333–340.

    Article  Google Scholar 

  • Troutt, C., & Levetin, E. (2001). Correlation of spring spore concentrations and meteorological conditions in Tulsa, Oklahoma. International Journal of Biometeorology, 45, 64–74.

    Article  CAS  Google Scholar 

  • Twaroch, T. E., Curin, M., Valenta, R., & Swoboda, I. (2015). Mold allergens in respiratory allergy: From structure to therapy. Allergy Asthma Immunol Res, 7, 205–220.

    Article  Google Scholar 

  • Weidenbörner, M. (2001). Encyclopedia of food mycotoxins. Heidelberg: Springer.

    Book  Google Scholar 

  • Zar, J. H. (1984). Biostatistical Analysis. New Jersey: Prentice Hall.

    Google Scholar 

  • Zureik, M., Neukirch, C., Leynaert, B., Liard, R., Bousquet, J., & Neukirch, F. (2002). Sensitisation to airborne moulds and severity of asthma: cross sectional study from European Community respiratory health survey. BMJ, 235, 1–7.

    Google Scholar 

Download references

Acknowledgements

This study was funded by the University of Worcester and conducted within the framework of the doctoral studies of the author. Special thanks go to two anonymous reviewers, Dr. Andrew M. Reynolds and Mr. Muralitharan Suppiah for the manuscript evaluation and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Sadyś.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadyś, M. An analysis of the exposure time to very high concentrations of Cladosporium conidia in the air of an urban site. Aerobiologia 33, 327–337 (2017). https://doi.org/10.1007/s10453-017-9472-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-017-9472-8

Keywords

Navigation