Skip to main content
Log in

Comparisons of fungal spore distributions using air sampling at Worcester, England (2006–2010)

  • OriginalPaper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

This study determined annual and monthly fluctuations in concentration of 20 fungal genera. The selection of taxa was made based upon their high frequency in the air as well as their well-known allergenic properties. Air samples were collected using a spore trap of Hirst design at an urban site where the trap continuously worked throughout a 5-year survey. Weather data were acquired from a meteorological station co-located with the air sampler. Influence of several meteorological parameters was then examined to reveal species–environment interactions and the potential location of fungal spore sources within the urban area. The maximum monthly sum of mean daily spore concentration varied between genera, and the earliest peaks were recorded for Pleospora sp. in April and Ustilago sp. in June. However, the majority of investigated spore types occurred in the greatest concentrations between August and September. Out of the 20 studied taxa, the most dominant genus was Cladosporium sp., which exceeded an allergenic threshold of 3000 s m−3 40 times during very rainy years and twice as much during dry years. A Spearman’s rank test showed that statistically significant (p ≤ 0.05) relationships between spore concentration and weather parameters were mainly r s  ≤ 0.50. Potential sources of spores at Worcester were likely to be localised outside the city area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bousquet, J., van Cauwenberge, P., & Khaltaev, N. (2001). Allergic rhinitis and its impact on asthma. Journal of Allergy and Clinical Immunology, 108, S147–S334.

    Article  CAS  Google Scholar 

  • Comtois, P. (1998). Statistical analysis of aerobiological data. In P. Mandrioli, P. Comtois, & V. Levizzani (Eds.), Methods in aerobiology (pp. 217–251). Bologna: Pitagora Editrice.

    Google Scholar 

  • Corden, J. M., & Millington, W. M. (2001). Long-term trends and seasonal variation in the aeroallergen Alternaria in Derby, UK. Aerobiologia, 17, 127–136.

    Article  Google Scholar 

  • D’Amato, G., & Spieksma, F. T. M. (1995). Aerobiologic and clinical aspects of mould allergy in Europe. Allergy, 50, 870–877.

    Article  Google Scholar 

  • Damialis, A., Vokou, D., Gioulekas, D., & Halley, J. M. (2015). Long-term trends in airborne fungal-spore concentrations: a comparison with pollen. Fungal Ecology, 13, 150–156.

    Article  Google Scholar 

  • Del Mar, Trigo M., Toro, F. J., Recio, M., & Cabezudo, B. (2000). A statistical approach to comparing the results from different aerobiological stations. Grana, 39(5), 252–258.

    Article  Google Scholar 

  • Denning, D. W., O’Driscoll, B. R., Hogaboam, C. M., Bowyer, P., & Niwen, R. M. (2006). The link between fungi and severe asthma: a summary of the evidence. European Respiratory Journal, 27, 615–626.

    Article  CAS  Google Scholar 

  • Desbois, N., Beguin, H., Ruck, G., Nere, J., & Nolard, N. (2006). Calendrier des spores fongiques de la Martinique. Journal of Medical Mycology, 16, 189–196.

    Article  Google Scholar 

  • Ellis, M. B. (1971). Dematiaceous hyphomycetes. London: The Eastern Press Ltd.

    Google Scholar 

  • Floyer, J. (1745). Violent asthma after visiting a wine cellar. London: Innys and Parker.

    Google Scholar 

  • Frankland, A. W., & Davies, R. R. (1965). Allergy to mold spores in England. Le Poumon et le coeur, 21, 11–31.

    CAS  Google Scholar 

  • Frenguelli, G. (2003). Basic microscopy, calculating the field of view, scanning of slides, sources of error. Post Dermatol Alergol, 20, 227–229.

    Google Scholar 

  • Galán, C., Smith, M., Thibaudon, M., Frenguelli, G., Oteros, J., Gehrig, R., et al. (2014). Pollen monitoring: minimum requirements and reproducibility of analysis. Aerobiologia, 30, 385–395.

    Article  Google Scholar 

  • Grant Smith, E. (1990). Sampling and identifying allergenic pollens and molds. An illustrated identification manual for air samplers. San Antonio: Blewstone Press.

    Google Scholar 

  • Green, B. J., Sercombe, J. K., & Tovey, E. R. (2005). Fungal fragments and undocumented conidia function as new aeroallergen sources. Journal of Allergy and Clinical Immunology, 115, 1043–1048.

    Article  Google Scholar 

  • Heinzerling, L., Frew, A. J., Bindslev-Jensen, C., Bonini, S., Bousquet, J., Bresciani, M., et al. (2005). Standard skin prick testing and sensitization to inhalant allergen across Europe: a survey from the GA2LEN network. Allergy, 60, 1287–1300.

    Article  CAS  Google Scholar 

  • Hirst, J. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39, 257–265.

    Article  Google Scholar 

  • Hyde, H. A., & Williams, D. A. (1959). Air-borne allergens. Postgraduate Medical Journal, 35, 458–462.

    Article  CAS  Google Scholar 

  • Ianovici, N., & Tudorica, D. (2009). Aeromycoflora in outdoor environment of Timisoara city (Romania). Notulae Scientia Biologicae, 1(1), 21–28.

    Google Scholar 

  • Jenkins, P. F., Mullins, J., Davies, B. H., & Williams, D. A. (1980). The possible role of aero-allergens in the epidemic of asthma deaths. Clinical and Experimental Allergy, 11, 611–620.

    Article  Google Scholar 

  • Kasprzyk, I. (2008). Co-occurrence of airborne allergenic pollen grains and fungal spores in Rzeszów, Poland (2000–2002). Acta Agrobotanica, 61(2), 65–73.

    Article  Google Scholar 

  • Kasprzyk, I., Rodinkova, V., Šaulienė, I., Ritenberga, O., et al. (2015). Air pollution by allergenic spores of the genus Alternaria in the air of central and eastern Europe. Environmental Science and Pollution Research International, 22(12), 9260–9274.

    Article  CAS  Google Scholar 

  • Kasprzyk, I., Rzepowska, B., & Wasylów, M. (2004). Fungal spores in the atmosphere of Rzeszów (South-East Poland). Annals of Agricultural and Environmental Medicine, 11, 285–289.

    Google Scholar 

  • Khot, A., & Burn, R. (1984). Seasonal variation and time trends of deaths from asthma in England and Wales 1960–1982. BMJ, 289, 233–234.

    Article  CAS  Google Scholar 

  • Kurup, V. P., Shen, H.-D., & Banerjee, B. (2000). Respiratory fungal allergy. Microbes and Infection, 2, 1101–1110.

    Article  CAS  Google Scholar 

  • Kurup, V. P., Shen, H.-D., & Vijay, H. (2002). Immunobiology of fungal allergens. International Archives of Allergy and Immunology, 129, 181–188.

    Article  CAS  Google Scholar 

  • Lacey, J. (1981). The aerobiology of conidial fungi. In G. T. Cole & B. Kendrick (Eds.), Biology of conidial fungi (pp. 373–416). New York: Academic Press.

    Chapter  Google Scholar 

  • Lacey, J. (1991). Aggregation of spores and its effect on aerodynamic behaviour. Grana, 30, 437–445.

    Article  Google Scholar 

  • Lacey, M. E., & West, J. (2006). The air spora. A manual for catching and identifying airborne biological particles. Dordrecht: Springer.

    Google Scholar 

  • Levetin, E., Horner, W. E., & Scott, J. A. (2015). Taxonomy of allergenic fungi. The Journal of Allergy and Clinical Immunology: In Practice,. doi:10.1016/j.jaip.2015.10.012.

    Google Scholar 

  • MAARA (2004) Spore calendar. Available from: http://www.maara.org/2013-08-19-06-21-06/spore-calendar. Accessed on 3 Aug 2015.

  • Morrow Brown, H., & Jackson, F. A. (1978). Aerobiological studies based in Derby. II. Simultaneous pollen and spore sampling at eight sites within a 60 km radius. Clinical Allergy, 8, 599–609.

    Article  Google Scholar 

  • Nikkels, A. H., Terstegge, P., & Spieksma, F. T. M. (1996). Ten types of microscopically identifiable airborne fungal spores at Leiden, the Netherlands. Aerobiologia, 12, 107–112.

    Article  Google Scholar 

  • Nilsson, S., & Persson, S. (1981). Tree pollen spectra in the Stockholm region (Sweden), 1973–1980. Grana, 20(3), 179–182.

    Article  Google Scholar 

  • O’Connor, D. J., Sadyś, M., Skjøth, C. A., Healy, D. A., Kennedy, R., & Sodeau, J. R. (2014). Atmospheric concentrations of Alternaria, Cladosporium, Ganoderma and Didymella spores monitored in Cork (Ireland) and Worcester (England) during the summer of 2010. Aerobiologia, 30, 397–411.

    Article  Google Scholar 

  • Ogden, E. C., Raynor, G. S., Hayes, J. V., Lewis, D. M., et al. (1974). Manual for sampling airborne pollen. New York: Hafner Press.

    Google Scholar 

  • Oteros, J., Galán, C., Alcazár, P., & Dominguez Vilches, E. (2013). Quality control in bio-monitoring networks, Spanish Aerobiology Network. Science of the Total Environment, 443, 559–565.

    Article  CAS  Google Scholar 

  • Rice, M. (2011). Worcestershire demographic report 2011 with South Worcestershire Appendix (pp. 1–21). Worcester: Worcestershire County Council.

    Google Scholar 

  • Rossi, V., Bugiani, R., Giosué, S., & Natali, P. (2005). Patterns of airborne conidia of Stemphylium vesicarium, the causal agent of brown spot disease of pears, in relation to weather conditions. Aerobiologia, 21, 203–216.

    Article  Google Scholar 

  • Sadyś, M., Kennedy, R., & West, J. S. (2015a). Possible scenarios of climate change impact on fungi: Analysis of 2 years of contrasting weather in the UK. Aerobiologia,. doi:10.1007/s10453-015-9402-6.

    Google Scholar 

  • Sadyś, M., Skjøth, C. A., & Kennedy, R. (2014). Back-trajectories show export of airborne fungal spores (Ganoderma sp.) from forests to agricultural and urban areas in England. Atmospheric Environment, 84, 88–99.

    Article  Google Scholar 

  • Sadyś, M., Skjøth, C. A., & Kennedy, R. (2015b). Forecasting methodologies for Ganoderma spore concentration using combined statistical approaches and model evaluations. International Journal of Biometeorology,. doi:10.1007/s00484-015-1045-3.

    Google Scholar 

  • Sadyś, M., Skjøth, C. A., & Kennedy, R. (2015c). Determination of Alternaria spp. habitats using 7-day volumetric spore trap, Hybrid Single Particle Lagrangian Integrated Trajectory model and geographic information system. Urban Climate, 14, 429–440.

    Article  Google Scholar 

  • Sadyś, M., Strzelczak, A., Grinn-Gofroń, A., & Kennedy, R. (2015d). Application of redundancy analysis for aerobiological data. International Journal of Biometeorology, 59, 25–36.

    Article  Google Scholar 

  • Simon-Nobbe, B., Denk, U., Pöll, V., & Rid, R. (2008). The spectrum of fungal allergy. International Archives of Allergy and Immunology, 145, 58–86.

    Article  Google Scholar 

  • Skjøth, C. A., Damialis, A., Belmonte, J., De Linares, C., Fernández Rodríguez, S., Grinn-Gofroń, A., et al. (2015). Alternaria spores in the air across Europe: Abundance, seasonality and relationships with climate, meteorology and local environment. Aerobiologia,. doi:10.1007/s10453-016-9426-6.

    Google Scholar 

  • Skjøth, C. A., Sommer, J., Frederiksen, L., & Karlson, U. G. (2012). Crop harvest in Denmark and Central Europe contributes to the local load of airborne Alternaria spore concentrations in Copenhagen. Atmospheric Chemistry and Physics, 12, 11107–11123.

    Article  Google Scholar 

  • Stępalska, D., & Wołek, J. (2009). The estimation of fungal spore concentrations using two counting methods. Acta Agrobotanica, 62, 117–123.

    Article  Google Scholar 

  • Sterling, M., Rogers, C., & Levetin, E. (1999). An evaluation of two methods used for microscopic analysis of airborne fungal spore concentrations from the Burkard Spore Trap. Aerobiologia, 15(1), 9–18.

    Article  Google Scholar 

  • Twaroch, T. E., Curin, M., Valenta, R., & Swoboda, I. (2015). Mold allergens in respiratory allergy: from structure to therapy. Allergy, Asthma & Immunology Research, 7(3), 205–220.

    Article  Google Scholar 

Download references

Acknowledgments

This study was jointly funded by the National Pollen and Aerobiology Research Unit and Graduate Research School at the University of Worcester and conducted within a framework of the doctoral studies of the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Sadyś.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadyś, M., Adams-Groom, B., Herbert, R.J. et al. Comparisons of fungal spore distributions using air sampling at Worcester, England (2006–2010). Aerobiologia 32, 619–634 (2016). https://doi.org/10.1007/s10453-016-9436-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-016-9436-4

Keywords

Navigation