Skip to main content

Advertisement

Log in

Low-cost mesoporous adsorbents amines-impregnated for CO2 capture

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Mesoporous adsorbent, SMCM-41, was synthesized from a new amorphous silica (MPI) obtained from sand, at low cost, with the aim of CO2 adsorption. To compare the properties of the SMCM-41, was used a mesoporous MCM-41 synthesized from commercial silica. Other adsorbents were obtained by impregnation of the materials MCM-41 and SMCM-41 using mono and diethanolamine amines, MEA (M) and DEA (D) at different concentrations: 3 % M, 3 % D, 10 % M, and 3 % M + 3 % D, to study the effect of concentration and the chain length of the amines in the CO2 adsorption performance. The synthesized materials were characterized by X-ray diffraction, N2 adsorption/desorption, thermogravimetric analysis (TG/DTG), scanning electron microscopy and transmission electron miscroscopy, to confirm the structural properties. CO2 adsorption isotherms were obtained at 25 °C and pressures from 1 to 40 bar. The experimental results were fitted to theoretical models of Langmuir and Freundlich, showing favorable CO2 adsorption for all materials. The maximum adsorption amount was 11.39 mmol g−1 for MCM-41 and 10.40 mmol g−1 for SMCM-41. It was found that for pressures close to 1 bar, impregnation with 3 % MEA was most effective with twice the CO2 adsorption compared to the pure material MCM-41 and SMCM-41. The impregnation with DEA was not efficient for the adsorption of CO2, confirming the negative effect of the size of the organic chain. This paper presents the mesoporous material SMCM-41, which has low cost, with high potential for adsorption of CO2 in different conditions of pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aiello, D., Mirabelli, I., Testa, F.: Adsorption of 2-methylbenzoic acid onto MCM-41 mesoporous material: kinetics and equilibrium studies. J. Solid Gel. Sci. Technol. 64, 1–8 (2012)

    Article  CAS  Google Scholar 

  • Allen, S.J., Mckay, G., Porter, J.F.: Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. J. Colloid Interface Sci. 280, 322–333 (2004)

    Article  CAS  Google Scholar 

  • Almeida, R.M., Guiton, T.A., Pantano, C.G.: Characterization of silica gels by infrared reflection spectroscopy. J. Non Cryst. Solids 121, 193–197 (1990)

    Article  CAS  Google Scholar 

  • Beck, J.S., Vartulli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.-W., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B., Schlenkert, J.L.: A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834–10843 (1992)

    Article  CAS  Google Scholar 

  • Belmabkhout, Y., Serna-Guerrero, R., Sayari, A.: Adsorption of CO2-containing gás mixtures over amine-bearing pore-expanded MCM-41 silica: application for CO2 separation. Adsorption 17, 395–401 (2011)

    Article  CAS  Google Scholar 

  • Bhagiyalakshmi, M., Yun, L.J., Anuradha, R., Jang, H.T.: Utilization of rice husk ash as silica source for the synthesis of mesoporous sílicas and their application to CO2 adsorption through TREN/TEPA grafting. J. Hazard. Mater. 175, 928–938 (2010)

    Article  CAS  Google Scholar 

  • Bounaceur, R., Lape, N., Roizard, D., Vallieres, C., Favre, E.: Membrane processes for post-combustion carbon dioxide capture: a parametric study. Energy 31, 2556–2570 (2006)

    Article  CAS  Google Scholar 

  • Braga, R.M., Barros, J.M.F., Melo, D.M.A., Melo, M.A.F., Aquino, F.M., Freitas, J.C.O., Santiago, R.C.: Kinetic study of template removal of MCM-41 derived from rice husk ash. J. Therm. Anal. Calorim. 111, 1013–1018 (2013)

    Article  CAS  Google Scholar 

  • Cauvel, A., Renard, G., Brunel, D.: Monoglyceride synthesis by heterogeneous catalysis using MCM-41 type silicas functionalized with amino groups. J. Org. Chem. 62, 749–751 (1997)

    Article  CAS  Google Scholar 

  • Chalal, N., Bouhali, H., Hamaizi, H., Lebeau, B., Bengueddach, A.: CO2 sorption onto silica mesoporous materials made from nonionic surfactants. Microporous Mesoporous Mater. 210, 32–38 (2015)

    Article  CAS  Google Scholar 

  • Chang, F.-Y., Chao, K.-J., Cheng, H.-H., Tan, C.-S.: Adsorption of CO2 on to amine-grafted mesoporous sílicas. Sep. Purif. Technol. 70, 87–95 (2009)

    Article  CAS  Google Scholar 

  • Chen, C., Son, W.-J., You, K.-S., Ahn, J.-W., Ahn, W.-S.: Carbon dioxide capture using amine-impregnated HMS having textural mesoporosity. Chem. Eng. J. 161, 46–52 (2010)

    Article  CAS  Google Scholar 

  • European Commission—A vision for zero emission fossil fuel power plants. Luxembourg: office for official publications of the European communities EUR 22043, http://ec.europa.eu/research/energy/pdf/zero_emission_ffpp_en.pdf (2006). Accessed Jun 2015

  • Finsy, V., Ma, L., Alaerts, L., DeVos, D.E., Baron, G.V., Denayer, J.F.M.: Separation of CO2/CH4 mixtures with the MIL-53(Al) metal-organic framework. Microporous Mesoporous Mater. 120, 221–227 (2009)

    Article  CAS  Google Scholar 

  • Freundlich, H.: Uber die adsorption in Losungen. Zeitschrift fur Physikalis-¨che. CEIME 57, 385–470 (1907)

  • Fujiki, J., Yamada, H., Yogo, K.: Enhanced adsorption of carbon dioxide on surface-modified mesoporous silica-supported tetraethylenepentamine: role of surface chemical structure. Microporous Mesoporous Mater. 215, 76–83 (2015)

    Article  CAS  Google Scholar 

  • Goscianska, J., Olejnik, A., Pietrzak, R.: Comparison of ordered mesoporous materials sorption properties towards amino acids. Adsorption 19, 581–588 (2013)

    Article  CAS  Google Scholar 

  • Gouedarda, C., Picqa, D., Launay, F., Carrette, P.L.: Amine degradation in CO2 capture. I. A review. Int J Greenhouse Gas Control. 10, 224–270 (2012)

    Google Scholar 

  • Goworek, J., Borówka, A., Zaleski, R., Kusak, R.: Template transformations in preparation of MCM-41 silica. J. Therm. Anal. Calorim. 79, 555–560 (2005)

    Article  CAS  Google Scholar 

  • Guan-Sajonz, H., Guiochon, G., Davis, E., Gulakowski, K., Smith, D.W.: Study of the physico-chemical properties of some packing materials III. Pore size and surface area distribution. J. Chromatogr. A 773, 33–51 (1997)

    Article  CAS  Google Scholar 

  • International Energy Agency (IEA), World Energy Outlook 2006. OECD/IEA, 2006. Report, Paris, France. https://www.iea.org/publications/freepublications/publication/weo2006.pdf (2006). Accessed on Jun 2015

  • Kalapathy, U., Proctor, A., Shultz, J.: An improved method for production of silica from rice hull ash. Bioresour. Technol. 85, 285–289 (2002)

    Article  CAS  Google Scholar 

  • Kamarudin, K.S.N., Alias, N.: Adsorption performance of MCM-41 impregnated with amine for CO2 removal. Fuel Process. Technol. 106, 332–337 (2013)

    Article  CAS  Google Scholar 

  • Knowles, G.P., Delaney, S.W., Chaffee, A.L.: Diethylenetriamine [propyl(silyl)]—functionalized (DT) mesoporous silicas as CO2 adsorbents. Ind. Eng. Chem. Res. 45(8), 2626–2633 (2006)

    Article  CAS  Google Scholar 

  • Koh, C.A., Nooney, R., Tahir, S.: Characterization and catalytic properties of MCM-41 and Pd/MCM-41 materials. Catal. Lett. 47, 199–203 (1997)

    Article  CAS  Google Scholar 

  • Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S.: Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992)

    Article  CAS  Google Scholar 

  • Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinium. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    Article  CAS  Google Scholar 

  • Leal, O., Bolivar, C., Ovalles, C., Garcia, J.J., Espidel, Y.: Reversible adsorption of carbon dioxide on amine surface-bonded silica gel. Inorg. Chim. Acta 240, 183–189 (1995)

    Article  CAS  Google Scholar 

  • Lee, S.-Y., Park, S.-J.: A review on solid adsorbents for carbon dioxide capture. J. Ind. Eng. Chem. 23, 1–11 (2015)

    Article  CAS  Google Scholar 

  • Liu, X., Zhou, L., Fu, X., Sun, Y., Su, W., Zhou, Y.: Adsorption and regeneration study of the mesoporous adsorbent SBA-15 adapted to the capture/separation of CO2 and CH4. Chem. Eng. Sci. 62, 1101–1110 (2007)

    Article  CAS  Google Scholar 

  • Liu, S.-H., Hsiao, W.-C., Chiang, C.-C.: Synthesis of Stable tetraethylenepentamine-functionalized mesocellular silica foams for CO2 adsorption. J. Chem. 2013, 6 (2013)

    Google Scholar 

  • Liu, Z., Teng, Y., Zhang, K., Chen, H., Yang, Y.: CO2 adsorption performance of different amine-based siliceous MCM-41 materials. J. Energy Chem. 24, 322–330 (2015)

    Article  Google Scholar 

  • Martínez, J.R., Palomares-Sánchez, S., Ortega-Zarzosa, G., Ruiz, F., Cchumakov, Y.: Rietveld refinement of amorphous SiO2 prepared via sol–gel method. Mater. Lett. 60, 3526–3529 (2006)

    Article  Google Scholar 

  • Mello, M.R., Phanon, D., Silveira, G.Q., Llewellyn, P.L., Ronconi, C.M.: Amine-modified MCM-41 mesoporous silica for carbondioxide capture. Microporous Mesoporous Mater. 143, 174–179 (2011)

    Article  CAS  Google Scholar 

  • Misran, H., Singh, R., Begum, S., Yarmo, M.A.: Processing of mesoporous silica materials (MCM-41) from coal fly ash. J. Mater. Process. Technol. 186, 8–13 (2007)

    Article  CAS  Google Scholar 

  • Monastersky, R.: A burden beyond bearing. Nature 458, 1091–1094 (2009)

    Article  CAS  Google Scholar 

  • Mookerjee, S.K., Niyogi, S.K.: Relation between time of gelation and concentration of added electrolyte in silicic acid sol. Bull. Cent. Glass Ceram. Res. Inst. 22, 1–5 (1975)

    CAS  Google Scholar 

  • Musić, S., Filipović-Vinceković, N., Sekovanić, L.: Precipitation of amorphous SiO2 particles and their properties. Braz. J. Chem. Eng. 28(1), 89–94 (2011)

    Google Scholar 

  • Oh, T.H.: Carbon capture and storage potential in coal-fired plant in Malaysia-A review. Renew. Sustain. Energy Rev. 14, 2697–2709 (2010)

    Article  CAS  Google Scholar 

  • Peng, L., Qisui, W., Xi, L., Chaocan, Z.: Investigation of the states of water and OH groups on the surface of sílica. Colloids Surf. A 334, 112–115 (2009)

    Article  Google Scholar 

  • Pérez-Marín, A.B., Zapata, V.M., Ortuño, J.F., Aguilar, M., Sáez, J., Lloréns, M.: Removal of cadmium from aqueous solutions by adsorption onto orange waste. J Hazard. Mater. B 139, 122–131 (2007)

    Article  Google Scholar 

  • Powell, C.E., Qiao, G.G.: Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J. Membr. Sci. 279, 1–49 (2006)

    Article  CAS  Google Scholar 

  • Prado, A.G.S., Faria, E.A., Padilha, P.M.: Aplication and chemical modification of silica-gel obtained from sand. Quim. Nova 28(3), 544–547 (2005)

    Article  CAS  Google Scholar 

  • Ravikovitch, P.I., Neimark, A.V.: Characterization of nanoporous materials from adsorption and desorption isotherms. Colloids Surf. A 187–188, 11–21 (2001)

    Article  Google Scholar 

  • Rodríguez-Estupiñán, P., Giraldo, L., Moreno-Piraján, J.C.: Calorimetric study of amino-functionalised SBA-15. J. Therm. Anal. Calorim. 121, 127–134 (2015)

    Article  Google Scholar 

  • Sanz, R., Calleja, G., Arencibia, A., Sanz-Perez, E.S.: CO2 capture with pore-expanded MCM-41 silica modified with amino groups by Double functionalization. Microporous Mesoporous Mater. 209, 165–171 (2015)

    Article  CAS  Google Scholar 

  • Shao, W., Zhang, L.Z., Li, L.X., Lee, R.L.: Adsorption of CO2 and N2 on synthesized NaY zeolite at high temperatures. Adsorption. 15, 497–505 (2009)

    Article  CAS  Google Scholar 

  • Silverstein, R.M.: Identificação espectrométrica de compostos orgânicos, 7th edn. LTC, Rio de Janeiro (2007)

    Google Scholar 

  • Son, W.-J., Choi, J.-S., Ahn, W.-S.: Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. Microporous Mesoporous Mater. 113, 31–40 (2008)

    Article  CAS  Google Scholar 

  • Souza, L.K.C., Pardauil, J.J.R., Zamian, J.R., Filho, G.N.R.: COSTA, C.E.F.: influence of the incorporated metal on template removal from MCM-41 type mesoporous materials. J. Therm. Anal. Calorim. 106, 355–361 (2011)

    Article  CAS  Google Scholar 

  • Stangeland, A.: A model for the CO2 capture potential. Int. J. Greenhouse Gas Control 1, 418–429 (2007)

    Article  CAS  Google Scholar 

  • Su, F., Lu, C., Chen, H.-S.: Adsorption, desorption, and thermodynamic studies of CO2 with high-amine-loaded multiwalled carbon nanotubes. Langmuir 27, 8090–8098 (2011)

    Article  CAS  Google Scholar 

  • Vijayalakshmi, U., Balamurugan, A., Rajeswari, S.: Synthesis and characterization of porous silica gels for biomedical applications. Trends Biomater. Artif. Organs 18(2), 101–105 (2005)

    Google Scholar 

  • Vilarrasa-García, E., Cecilia, J.A., Moya, E.M.O., Cavalcante Jr, C.L., Azevedo, D.C.S., Rodríguez-Castellón, E.: “Low cost” pore expanded SBA-15 functionalized with amine groups applied to CO2 adsorption. Materials 8, 2495–2513 (2015)

    Article  Google Scholar 

  • Vunain, E., Opembe, N.N., Jalama, K., Mishra, A.K., Meijboom, R.: Thermal stability of amine-functionalized MCM-41 in different atmospheres. J. Therm. Anal. Calorim. 115, 1487–1496 (2014)

    Article  CAS  Google Scholar 

  • Wei, J., Liao, L., Xiao, Y., Zhang, P., Shi, Y.: Capture of carbon dioxide by amine-impregnated as synthesized MCM-41. J. Environ. Sci. 22(10), 1558–1563 (2010)

    Article  CAS  Google Scholar 

  • Wörmeyer, K., Alnaief, M., Smirnova, I.: Amino functionalised silica-aerogels for CO2-adsorption at low partial pressure. Adsorption 18, 163–171 (2012)

    Article  Google Scholar 

  • Wypych, F., Schreiner, W.H., Júnior, E.R.: Grafting of phenylarsonic and 2-nitrophenol-4-arsonic acid onto disordered silica obtained by selective leaching of brucitelike sheet from chrysotile structure. J. Colloid Interface Sci. 276, 167–173 (2004)

    Article  CAS  Google Scholar 

  • Xu, X., Song, C., Andresen, J.M., Miller, B.G., Scaroni, A.W.: Novel polyethylenimine modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy Fuels 16, 1463–1469 (2002)

    Article  CAS  Google Scholar 

  • Xu, X., Song, C., Andrésen, J.M., Miller, B.G., Scaroni, A.W.: Preparation and characterization of novel CO2 ‘‘molecular basket’’ adsorbents based on polymer-modified mesoporous molecular sieve MCM-41. Microporous Mesoporous Mater. 62, 29–45 (2003)

    Article  CAS  Google Scholar 

  • Xu, X.C., Song, C.S., Miller, B.G., Scaroni, A.W.: Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by a novel nanoporous “molecular basket” adsorbent. Fuel Process. Technol. 86, 1457–1472 (2005)

    Article  CAS  Google Scholar 

  • Yang, H., Gong, M., Chen, Y.: Preparation of activated carbons and their adsorption properties for greenhouse gases: CH4 and CO2. J. Nat. Gas Chem. 20, 460–464 (2011)

    Article  CAS  Google Scholar 

  • Yang, G., Deng, Y., Ding, H., Lin, Z., Shao, Y., Wang, Y.: A facile approach to synthesize MCM-41 mesoporous materials from iron ore tailing: influence of the synthesis conditions on the structural properties. Appl. Clay Sci. 111, 61–66 (2015)

    Article  CAS  Google Scholar 

  • Yong, Z., Mata, V.G., Rodrigues, A.E.: Adsorption of carbon dioxide on chemically modified high surface area carbon-based adsorbents at high temperature. Adsorption 7, 41–50 (2001)

    Article  CAS  Google Scholar 

  • Yu, H., Xue, X., Huang, D.: Synthesis of mesoporous silica materials (MCM-41) from iron ore tailings. Mater. Res. Bull. 44, 2112–2115 (2009)

    Article  CAS  Google Scholar 

  • Yue, M.B., Sun, L.B., Cao, Y., Wang, Y., Wang, Z.J., Zhu, J.H.: Efficient CO2 capturer derived from as-synthesized MCM-41 modified with amine. Chem. Eur. J. 14, 3442–3451 (2008)

    Article  CAS  Google Scholar 

  • Zelenáka, V., Badanicová, M., Halamová, D., Cejka, J., Zukal, A., Murafa, N., Goerigk, G.: Amine-modified ordered mesoporous silica: effect of pore size on carbon dioxide capture. Chem. Eng. J. 144, 336–342 (2008)

    Article  Google Scholar 

  • Zhang, J., Singh, R., Webley, P.A.: Alkali and alkaline-earth cation exchanged chabazite zeolites for adsorption based CO2 capture. Microporous Mesoporous Mater. 111, 478–487 (2008)

    Article  CAS  Google Scholar 

  • Zhang, Z., Wang, H., Chen, X., Zhu, C., Wei, W., Sun, Y.: Chromium-based metal-organic framework/mesoporous carbon composite: synthesis, characterization and CO2 adsorption. Adsorption 21, 77–86 (2015)

    Article  Google Scholar 

  • Zhuravlev, L.T.: The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf. A 173, 1–38 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Federal University of Rio Grande do Norte, the Gas Technology Centre and Renewable Energy-CTGAS-ER, the researchers LABPETROL/UFRN for obtaining the adsorbents, the LABPEMOL/UFRN by XRD and calcination, the LABTAM/UFRN by SEM images and the LCE/DEMa/UFSCar by TEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciene Santos de Carvalho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Carvalho, L.S., Silva, E., Andrade, J.C. et al. Low-cost mesoporous adsorbents amines-impregnated for CO2 capture. Adsorption 21, 597–609 (2015). https://doi.org/10.1007/s10450-015-9710-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-015-9710-8

Keywords

Navigation