Skip to main content
Log in

Preparation of nitrogen-functionalized mesoporous carbon and its application for removal of copper ions

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nitrogen-functionalized mesoporous carbon (NMC) materials with high nitrogen content were synthesized through a hard template method using ionic liquid of 1-cyanomethyl-3-methylimidazolium bromide as the precursor and LUDOX HS-40 colloidal silica as the template. The obtained NMCs were characterized by X-ray diffraction, transmission electron microscopy, N2 adsorption and desorption analysis, X-ray photoelectron spectroscopy, and elemental analysis. It was shown that the carbonization temperature played a critical role in determining the physiochemical properties and the nitrogen content of the carbon materials. The obtained nitrogen-functionalized mesoporous carbon carbonized at 800 °C possessed disordered mesoporous structure with very high specific surface area of 1028 m2 g−1, large pore volume of 0.94 cm3 g−1, and high nitrogen content of 21.0 wt%. The adsorption performance of the prepared NMCs was investigated by removing Cu2+ from aqueous solutions and the adsorption capacity could attain 117.1 mg g−1 at an optimal condition. The kinetic and isothermal analysis revealed that the removal of Cu2+ by the NMCs belongs to chemical monolayer adsorption, suggesting the strong interaction between Cu2+ and the adsorbent. The XPS spectra of N1s before and after adsorption of Cu2+ suggested that the pyridinic-type nitrogen was the dominant groups of the adsorbent in the adsorption process. Furthermore, the material was separated from solution by filtration and displayed a superior reusability in the recycling test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hill MK (2010) Understanding environmental pollution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Matlock MM, Howerton BS, Atwood DA (2002) Chemical precipitation of lead from lead battery recycling plant wastewater. Ind Eng Chem Res 41(6):1579–1582

    Article  Google Scholar 

  3. Matlock MM, Howerton BS, Atwood DA (2002) Chemical precipitation of heavy metals from acid mine drainage. Water Res 36(19):4757–4764

    Article  Google Scholar 

  4. Verbych S, Hilal N, Sorokin G, Leaper M (2005) Ion exchange extraction of heavy metal ions from wastewater. Separ Sci Technol 39(9):2031–2040

    Article  Google Scholar 

  5. Dabrowski A, Hubicki Z, Podkościelny P, Robens E (2004) Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56(2):91–106

    Article  Google Scholar 

  6. Zeng G-M, Xu K, Huang J-H, Li X, Fang Y-Y, Qu Y-H (2008) Micellar enhanced ultrafiltration of phenol in synthetic wastewater using polysulfone spiral membrane. J Membr Sci 310(1):149–160

    Article  Google Scholar 

  7. Borbély G, Nagy E (2009) Removal of zinc and nickel ions by complexation–membrane filtration process from industrial wastewater. Desalination 240(1):218–226

    Article  Google Scholar 

  8. Ngah W, Fatinathan S (2010) Adsorption characterization of Pb(II) and Cu (II) ions onto chitosan-tripolyphosphate beads: kinetic, equilibrium and thermodynamic studies. J Environ Manage 91(4):958–969

    Article  Google Scholar 

  9. Wen Y, Ma J, Chen J, Shen C, Li H, Liu W (2015) Carbonaceous sulfur-containing chitosan–Fe(III): a novel adsorbent for efficient removal of copper (II) from water. Chem Eng J 259:372–380

    Article  Google Scholar 

  10. Tian H, Feng Q, Chen Y, Yang H, Li X, Lu P (2015) Synthesis of amino-functionalized mesoporous materials with environmentally friendly surfactants by evaporation-induced self-assembly and their application to the adsorption of lead(II) ions. J Mater Sci 50(7):2768–2778. doi:10.1007/s10853-015-8832-4

    Google Scholar 

  11. Awual MR, Hasan MM (2015) Colorimetric detection and removal of copper(II) ions from wastewater samples using tailor-made composite adsorbent. Sens Actuat B 206:692–700

    Article  Google Scholar 

  12. Rajurkar NS, Gokarn AN, Dimya K (2011) Adsorption of chromium (III), nickel (II), and copper (II) from aqueous solution by activated alumina. CLEAN–Soil, Air Water 39(8):767–773

    Article  Google Scholar 

  13. Wu Z, Li W, Webley PA, Zhao D (2012) General and controllable synthesis of novel mesoporous magnetic iron oxide@carbon encapsulates for efficient arsenic removal. Adv Mater 24(4):485–491

    Article  Google Scholar 

  14. Wang X, Pei Y, Lu M, Lu X, Du X (2015) Highly efficient adsorption of heavy metals from wastewaters by graphene oxide-ordered mesoporous silica materials. J Mater Sci 50(5):2113–2121. doi:10.1007/s10853-014-8773-3

    Article  Google Scholar 

  15. Wu Z, Zhao D (2011) Ordered mesoporous materials as adsorbents. Chem Commun 47(12):3332–3338

    Article  Google Scholar 

  16. Awual MR, Yaita T, El-Safty SA, Shiwaku H, Suzuki S, Okamoto Y (2013) Copper(II) ions capturing from water using ligand modified a new type mesoporous adsorbent. Chem Eng J 221:322–330

    Article  Google Scholar 

  17. Li Z, Liu J, Xia C, Li F (2013) Nitrogen-functionalized ordered mesoporous carbons as multifunctional supports of ultrasmall pd nanoparticles for hydrogenation of phenol. ACS Catalysis 3(11):2440–2448

    Article  Google Scholar 

  18. Goettmann F, Fischer A, Antonietti M, Thomas A (2006) Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for friedel-crafts reaction of benzene. Angew Chem Int Ed 45(27):4467–4471

    Article  Google Scholar 

  19. Awual MR (2015) A novel facial composite adsorbent for enhanced copper(II) detection and removal from wastewater. Chem Eng J 266:368–375

    Article  Google Scholar 

  20. Awual MR, Yaita T, Okamoto Y (2014) A novel ligand based dual conjugate adsorbent for cobalt(II) and copper(II) ions capturing from water. Sens Actuat B 203:71–80

    Article  Google Scholar 

  21. Awual MR, Ismael M, Yaita T, El-Safty SA, Shiwaku H, Okamoto Y, Suzuki S (2013) Trace copper(II) ions detection and removal from water using novel ligand modified composite adsorbent. Chem Eng J 222:67–76

    Article  Google Scholar 

  22. Wang J, Xin HL, Wang D (2014) Recent progress on mesoporous carbon materials for advanced energy conversion and storage. Part Part Syst Char 31(5):515–539

    Article  Google Scholar 

  23. Li Q, Jiang R, Dou Y, Wu Z, Huang T, Feng D, Yang J, Yu A, Zhao D (2011) Synthesis of mesoporous carbon spheres with a hierarchical pore structure for the electrochemical double-layer capacitor. Carbon 49(4):1248–1257

    Article  Google Scholar 

  24. Lu A, Kiefer A, Schmidt W, Schüth F (2004) Synthesis of polyacrylonitrile-based ordered mesoporous carbon with tunable pore structures. Chem Mater 16(1):100–103

    Article  Google Scholar 

  25. Fuertes AB, Centeno TA (2005) Mesoporous carbons with graphitic structures fabricated by using porous silica materials as templates and iron-impregnated polypyrrole as precursor. J Mater Chem 15(10):1079–1083

    Article  Google Scholar 

  26. Vinu A, Anandan S, Anand C, Srinivasu P, Ariga K, Mori T (2008) Fabrication of partially graphitic three-dimensional nitrogen-doped mesoporous carbon using polyaniline nanocomposite through nanotemplating method. Micropor Mesopor Mat 109(1–3):398–404

    Article  Google Scholar 

  27. Park I-S, Choi M, Kim T-W, Ryoo R (2006) Synthesis of magnetically separable ordered mesoporous carbons using furfuryl alcohol and cobalt nitrate in a silica template. J Mater Chem 16(33):3409–3416

    Article  Google Scholar 

  28. Chen H, Sun F, Wang J, Li W, Qiao W, Ling L, Long D (2013) Nitrogen Doping Effects on the Physical and Chemical Properties of Mesoporous Carbons. J Phys Chem C 117(16):8318–8328

    Article  Google Scholar 

  29. Zhang S, Dokko K, Watanabe M (2014) Direct synthesis of nitrogen-doped carbon materials from protic ionic liquids and protic salts: structural and physicochemical correlations between precursor and carbon. Chem Mater 26(9):2915–2926

    Article  Google Scholar 

  30. Lee JS, Wang X, Luo H, Baker GA, Dai S (2009) Facile ionothermal synthesis of microporous and mesoporous carbons from task specific ionic liquids. J Am Chem Soc 131(13):4596–4597

    Article  Google Scholar 

  31. Yuan J, Giordano C, Antonietti M (2010) Ionic liquid monomers and polymers as precursors of highly conductive, mesoporous, graphitic carbon nanostructures. Chem Mater 22(17):5003–5012

    Article  Google Scholar 

  32. Fulvio PF, Lee JS, Mayes RT, Wang X, Mahurin SM, Dai S (2011) Boron and nitrogen-rich carbons from ionic liquid precursors with tailorable surface properties. Phys Chem Chem Phys 13(30):13486–13491

    Article  Google Scholar 

  33. Chen A, Yu Y, Zhang Y, Xing T, Wang Y, Zhang Y, Zhang J (2014) Solid–solid grinding/templating route to magnetically separable nitrogen-doped mesoporous carbon for the removal of Cu2+ ions. J Hazard Mater 279:280–288

    Article  Google Scholar 

  34. Kruk M, Jaroniec M (2001) Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem Mater 13(10):3169–3183

    Article  Google Scholar 

  35. Paraknowitsch JP, Zhang J, Su D, Thomas A, Antonietti M (2010) Ionic liquids as precursors for nitrogen-doped graphitic carbon. Adv Mater 22(1):87–92

    Article  Google Scholar 

  36. Biniak S, Szymański G, Siedlewski J, Światkowski A (1997) The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 35(12):1799–1810

    Article  Google Scholar 

  37. Madhava Rao M, Ramesh A, Purna Chandra Rao G, Seshaiah K (2006) Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls. J Hazard Mater 129(1–3):123–129

    Article  Google Scholar 

  38. Deng S, Bai R, Chen JP (2003) Behaviors and mechanisms of copper adsorption on hydrolyzed polyacrylonitrile fibers. J Colloid Interf Sci 260(2):265–272

    Article  Google Scholar 

  39. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    Article  Google Scholar 

  40. Huang Y, Li S, Chen J, Zhang X, Chen Y (2014) Adsorption of Pb(II) on mesoporous activated carbons fabricated from water hyacinth using H3PO4 activation: adsorption capacity, kinetic and isotherm studies. Appl Surf Sci 293:160–168

    Article  Google Scholar 

  41. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403

    Article  Google Scholar 

  42. Freundlich H (1906) Über die adsorption in lösungen. Zeitschrift für Physikalische

  43. Günay A, Arslankaya E, Tosun İ (2007) Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics. J Hazard Mater 146(1–2):362–371

    Article  Google Scholar 

  44. Veli S, Alyüz B (2007) Adsorption of copper and zinc from aqueous solutions by using natural clay. J Hazard Mater 149(1):226–233

    Article  Google Scholar 

  45. Mohan D, Pittman CU Jr, Steele PH (2006) Single, binary and multi-component adsorption of copper and cadmium from aqueous solutions on Kraft lignin—a biosorbent. J Colloid Interf Sci 297(2):489–504

    Article  Google Scholar 

  46. Liu C, Bai R, San Ly Q (2008) Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: behaviors and mechanisms. Water Res 42(6–7):1511–1522

    Article  Google Scholar 

  47. Xue X, Li F (2008) Removal of Cu(II) from aqueous solution by adsorption onto functionalized SBA-16 mesoporous silica. Micropor Mesopor Mat 116(1–3):116–122

    Article  Google Scholar 

  48. Kula I, Uğurlu M, Karaoğlu H, Çelik A (2008) Adsorption of Cd(II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation. Bioresource Technol 99(3):492–501

    Article  Google Scholar 

  49. Chen H, Yan T, Jiang F (2014) Adsorption of Cr(VI) from aqueous solution on mesoporous carbon nitride. J Taiwan Inst Chem E 45(4):1842–1849

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Grant 51374195) and the “100 Talents Program” held by the Chinese Academy of Science (CAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sili Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Ren, S. Preparation of nitrogen-functionalized mesoporous carbon and its application for removal of copper ions. J Mater Sci 50, 4600–4609 (2015). https://doi.org/10.1007/s10853-015-9009-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9009-x

Keywords

Navigation