Skip to main content
Log in

System identification in dynamical sampling

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We consider the problem of spatiotemporal sampling in a discrete infinite dimensional spatially invariant evolutionary process x (n) = A n x to recover an unknown convolution operator A given by a filter \(a \in \ell ^{1}(\mathbb {Z})\) and an unknown initial state x modeled as a vector in \(\ell ^{2}(\mathbb {Z})\). Traditionally, under appropriate hypotheses, any x can be recovered from its samples on \(\mathbb {Z}\) and A can be recovered by the classical techniques of deconvolution. In this paper, we will exploit the spatiotemporal correlation and propose a new sampling scheme to recover A and x that allows us to sample the evolving states x,A x,⋯ ,A N−1 x on a sub-lattice of \(\mathbb {Z}\), and thus achieve a spatiotemporal trade off. The spatiotemporal trade off is motivated by several industrial applications (Lu and Vetterli, 2249–2252, 2009). Specifically, we show that

$\{x(m\mathbb {Z}), Ax(m\mathbb {Z}), \cdots , A^{N-1}x(m\mathbb {Z}): N \geq 2m\}$

contains enough information to recover a typical “low pass filter” a and x almost surely, thus generalizing the idea of the finite dimensional case in Aldroubi and Krishtal, arXiv:1412.1538 (2014). In particular, we provide an algorithm based on a generalized Prony method for the case when both a and x are of finite impulse response and an upper bound of their support is known. We also perform a perturbation analysis based on the spectral properties of the operator A and initial state x, and verify the results by several numerical experiments. Finally, we provide several other numerical techniques to stabilize the proposed method, with some examples to demonstrate the improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldroubi, A., Krishtal, I.: Krylov subspace methods in dynamical sampling. arXiv:1412.1538 (2014)

  2. Aldroubi, A., Molter, U., Cabrelli, C., Tang, S.: Dynamical Sampling. arXiv:1409.8333. To appear in Applied And Computational Harmonic Analysis

  3. Adcock, B., Hansen, A.: A generalized sampling theorem for stable reconstructions in arbitrary bases. J. Fourier Anal. Appl. 18(4), 685–716 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Sun, Q.: Nonuniform average sampling and reconstruction of signals with finite rate of innovation. SIAM J. Math. Anal. 38(5), 1389–1422 (2006/07). electronic

    Article  MathSciNet  MATH  Google Scholar 

  5. Adcock, B., Hansen, A.: Generalized sampling and the stable and accurate reconstruction of piecewise analytic functions from their Fourier coefficients. Math. Comp. 84, 237–270 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Slepian, D., Wolf, J.: Noiseless coding of correlated information sources. IEEE Trans. Inf. Theory 19, 471 –480 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gilbert, A., Indyk, P., Iwen, M.A., Schmidt, L.: Recent Developments in the Sparse Fourier Transform. IEEE Signal Process. Mag. 31(5), 91–100 (2014)

    Article  Google Scholar 

  8. Iwen, M.A.: Combinatorial sublinear-time Fourier algorithms. Found. Comput. Math. 10, 303–338 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Iwen, M.A.: Improved approximation guarantees for sublinear-time Fourier algorithms. Appl. Comput. Harmon. Anal. 34, 57–82 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lawlor, D., Wang, Y., Christlieb, A.: Adaptive sub-linear time Fourier algorithms. Adv. Adapt. Data Anal. 5(1) (2013)

  11. Aldroubi, A., Davis, J., Krishtal, I.: Exact reconstruction of signals in evolutionary systems via spatiotemporal trade-off. J. Fourier Anal. Appl. 21(1), 11–31 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Peter, T., Plonka, G.: A generalized Prony method for reconstruction of sparse sums of eigenfunctions of linear operators. Inverse Probl. 29, 025001 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sun, Q.: Frames in spaces with finite rate of innovation. Adv. Comput. Math. 28(4), 301–329 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Aldroubi, A., Krishtal, I., Weber, E. In: Balan, R., Begue, M., Benedetto, J., Czaja, W., Okodujou, K. (eds.) : Finite dimensional dynamical sampling: an overview. Excursions in harmonic analysis, vol. 3. Applied Numerical Harmonic Analysis, Birkhäuser/Springer, New York (2015). To appear

  15. Aldroubi, A., Gröchenig, K.: Nonuniform sampling and reconstruction in shift-invariant spaces. SIAM Rev. 43, 585–620 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bass, R.F., Gröchenig, K.: Relevant sampling of bandlimited functions, Illinois J. Math To appear (2012)

  17. Christensen, J., Ólafsson, G.: Sampling in spaces of bandlimited functions on commutative spaces. In: Applied and Numerical Harmonic Analysis book Excursions in Harmonic Analysis, vol. 1, pp. 35–69 (2013)

  18. Jorgensen, P., Tian, Feng: Discrete reproducing kernel Hilbert spaces: Sampling and distribution of Dirac-masses. arXiv:1501.02310

  19. Iosevich, A., Mayeli, A.: Exponential bases, Paley-Wiener spaces, and applications. J. Funct. Anal. 268(2), 363–375 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Adcock, B., Hansen, A., Herrholz, E., Teschke, G.: Generalized sampling: extensions to frames and inverse and ill-posed problems. Inverse Probl. 29, 015008

  21. Aldroubi, A., Davis, J., Krishtal, I.: Dynamical sampling: time space trade-off. Appl. Comput. Harmon. Anal. 34(3), 495–503 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Roy, R., Paulraj, A., Kailath, T.: ESPRIT-A subspace rotation ap- proach to estimation of parameters of cisoids in noise. IEEE Trans. Acoust., Speech Signal Process. 34(5), 1340–1342 (1986)

    Article  Google Scholar 

  23. Aceska, R., Tang, S.: Dynamical sampling in hybrid shift invariant spaces. In: Furst, V., Kornelsen, K., Weber, E. (eds.) Operator Methods in Wavelets, Tilings, and Frame. To appear, vol. 626. Contemporary Mathematics, American Mathematics Society, Providence (2014)

    Google Scholar 

  24. Borodchov, S., Hardin, D., Saff, E.B.: Minimal Discrete Energy on the Sphere and other Manifolds, Springer. To appear

  25. Aceska, R., Aldroubi, A., Davis, J., Petrosyan, A.: Dynamical sampling in shift invariant spaces. In: Mayeli, A., Iosevich, A., Jorgensen, P., Ólafsson, G. (eds.) Commutative and Noncommutative Harmonic Analysis and Applications, vol. 603, pp. 139–148. Contemporary Mathematics, American Mathematical Society, Providence (2013)

    Chapter  Google Scholar 

  26. Reise, G., Matz, G., Gröchenig, K.: Distributed field reconstruction in wireless sensor networks based on hybrid shift-invariant spaces. IEEE Trans Signal Processi 60(10), 5426–5439 (2012)

    Article  MathSciNet  Google Scholar 

  27. Cadzow, J.A.: Signal enhancement—A composite property mapping algorithm. IEEE Trans. Acoust., Speech Signal Process. 36, 49–67 (1988)

    Article  MATH  Google Scholar 

  28. Hua, Y., Sarar, T.K.: Matrix Pencil Method for Estimating Parameters of Exponentially Damped/ Undamped Sinusoids in Noise. IEEE Trans. Acoust., Speech Signal Process. 38, 814–824 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hua, Yingbo, Sarar, T.K.: On SVD for Estimating Generalized Eigenvalues of Singular Matrix Pencil in Noise. IEEE Trans. Signal Process. 39(4), 892–900 (1991)

    Article  Google Scholar 

  30. Reise, G., Matz, G.: Distributed sampling and reconstruction of non-bandlimited fields in sensor networks based on shift-invariant spaces. In: Proceedings ICASSP, pp. 2061–2064. Taipeh, Taiwan (2009)

  31. Reise, G., Matz, G.: Reconstruction of time-varying fields in wireless sensor networks using shift-invariant spaces: interative algorithms and impact of sensor localization errors. In: Proceedings SPAWC, pp. 1–5. Marrakech, Morocco (2010)

  32. Jorgensen, P.: A sampling theory for infinite weighted graphs. Opuscula Math. 31(2), 209–236 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nashed, M.Z., Sun, Q.: Sampling and reconstruction of signals in a reproducing kernel subspace of L p (R d). J. Funct Anal. 258(7), 2422–2452 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lu, Y., Vetterli, M.: Spatial super-resolution of a diffusion field by temporal oversampling in sensor networks. In: IEEE International Conference on Acoustics, Speech and Signal Processing, 2009. ICASSP 2009, pp. 2249 –2252 (2009)

    Chapter  Google Scholar 

  35. Hormati, A., Roy, O., Lu, Y., Vetterli, M.: Distributed sampling of signals linked by sparse filtering: theory and applications. IEEE Trans. Signal Process. 58(3), 1095–1109 (2010)

    Article  MathSciNet  Google Scholar 

  36. Daubechies, I.: Ten lectures on wavelets CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1992)

    Google Scholar 

  37. Han, D., Nashed, M.Z., Sun, Q.: Sampling expansions in reproducing kernel Hilbert and Banach spaces. Numer. Funct. Anal. Optim. 30(9-10), 971–987 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: A survey. Comput. Netw. 38, 393–422 (2002)

    Article  Google Scholar 

  39. Blu, T., Dragotti, P.L., Vetterli, M., Marziliano, P., Coulot, L.: Sparse sampling of signal innovations. IEEE Signal Process. Mag. 25, 31–40 (2008)

    Article  Google Scholar 

  40. Badeau, R., David, B., Richard, G.: High-resolution spectral analysis of mixtures of complex exponentials modulated by polynomials. IEEE Trans. Signal Process. 54(4), 1341–1350 (2006)

    Article  Google Scholar 

  41. Vinberg, E.B.: A course in algebra. American Mathematical Society, Providence, R.I (2003). ISBN 0-8218-3413-4

    Book  MATH  Google Scholar 

  42. Benedetto, J. J., Ferreira, P.J.S.G. (eds.): Modern sampling theory. Modern sampling theory, Applied and Numerical Harmonic Analysis, Birkhäuser Boston Inc., Boston, MA (2001)

    MATH  Google Scholar 

  43. Nashed, M.Z.: Inverse problems, moment problems, signal processing un menage a trois, Mathematics in science and technology, pp. 2–19. World Scientific Publications, Hackensack, NJ (2011)

    Google Scholar 

  44. Eisinberg, A., Franzé, G., Pugliese, P.: Vandermonde matrices on Chebyshev points. Linear Algebra Appl. 283(1–3), 205–219 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  45. Timan, A.: Theory of approximation of functions of a real variable. Courier Dover Publications, 37 (1963)

  46. Gautschi, W.: Norm estimates for inverses of Vandermonde matrices. Numer. Math. 23, 337–347 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  47. Gautschi, W.: How (Un)stable Are Vandermonde Systems. Asymptotic and computational analysis (Winnipeg, MB, 1989) Lecture Notes in Pure and Applications of Mathematics, vol. 124, pp. 193–210. Dekker, New York (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sui Tang.

Additional information

Communicated by: Yang Wang

The research of this work is supported by NSF Grant DMS-1322099

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, S. System identification in dynamical sampling. Adv Comput Math 43, 555–580 (2017). https://doi.org/10.1007/s10444-016-9497-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-016-9497-5

Keywords

Mathematics Subject Classification (2010)

Navigation