Skip to main content
Log in

Frames in spaces with finite rate of innovation

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Signals with finite rate of innovation are those signals having finite degrees of freedom per unit of time that specify them. In this paper, we introduce a prototypical space \(V_q(\Phi, \Lambda)\) modeling signals with finite rate of innovation, such as stream of (different) pulses found in GPS applications, cellular radio and ultra wide-band communication. In particular, the space \(V_q(\Phi, \Lambda)\) is generated by a family of well-localized molecules \(\Phi\) of similar size located on a relatively separated set \(\Lambda\) using \(\ell^q\) coefficients, and hence is locally finitely generated. Moreover that space \(V_q(\Phi, \Lambda)\) includes finitely generated shift-invariant spaces, spaces of non-uniform splines, and the twisted shift-invariant space in Gabor (Wilson) system as its special cases. Use the well-localization property of the generator \(\Phi\), we show that if the generator \(\Phi\) is a frame for the space \(V_2(\Phi, \Lambda)\) and has polynomial (sub-exponential) decay, then its canonical dual (tight) frame has the same polynomial (sub-exponential) decay. We apply the above result about the canonical dual frame to the study of the Banach frame property of the generator \(\Phi\) for the space \(V_q(\Phi, \Lambda)\) with \(q\ne 2\), and of the polynomial (sub-exponential) decay property of the mask associated with a refinable function that has polynomial (sub-exponential) decay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldroubi, A., Gröchenig, K.: Nonuniform sampling and reconstruction in shift-invariant space. SIAM Rev. 43, 585–620 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aldroubi, A., Sun, Q., Tang, W.-S.: \(p\)-frames and shift invariant subspaces of \(L^p\). J. Fourier Anal. Appl. 7, 1–21 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aldroubi, A., Sun, Q., Tang, W.-S.: Convolution, average sampling and a Calderon resolution of the identity for shift-invariant spaces. J. Fourier Anal. Appl. 11, 215–244 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Balan, R., Casazza, P.G., Heil, C., Landau, Z.: Density, overcompleteness and localization of frames I: theorey; II: Gabor system. Preprint (2004)

  5. Baskakov, A.G.: Wiener's theorem and asymptotic estimates for elements in inverse matrices. Funktsional Anal. o. Prilozhen. 24, 64–65 (1990)

    MathSciNet  Google Scholar 

  6. Benedetto, J.J., Li, S.: The theory of multiresolution analysis frames and applications to filter banks. Appl. Comput. Harmon. Anal. 5, 389–427 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bownik, M.: The structure of shift-invariant subspaces of \(L\sp 2(R\sp n)\). J. Funct. Anal. 177, 282–309 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bownik, M.: Anisotropic Hardy spaces and wavelets. Mem. Am. Math. Soc. 781, 22 pp (2003)

    Google Scholar 

  9. Butzer, P.L.: A survey of the Whittaker–Shannon sampling theorem and some of its extensions. J. Math. Res. Expo. 3, 185–212 (1983)

    MathSciNet  Google Scholar 

  10. Casazza, P.: The art of frame theory. Taiwan. J. Math. 4, 129–201 (2000)

    MATH  MathSciNet  Google Scholar 

  11. Casazza, P., Han, D., Larson, D.R.: Frames for Banach spaces. In: The Functional and Harmonic Analysis of Wavelets and Frames (San Antonio, Texas, 1999), Contemporary Mathematics, vol. 247, pp. 149–182. (1999)

  12. Chen, H.-L., Peng, S.-L.: Localization of dual periodic scaling and wavelet functions. Adv. Comput. Math. 19, 195–210 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Boston (2003)

  14. Christensen, O., Stoeva, D.T.: \(p\)-frames in separable Banach spaces. Adv. Comput. Math. 18, 117–126 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chui, C.K.: An Introduction to Wavelets. Academic, Boston, Massachusetts (1992)

  16. Chui, C.K., He, W., Stöckler, J.: Nonstationary tight wavelet frames: I. Bounded intervals; II. Unbounded intervals. Appl. Comput. Harmon. Anal. 17, 141–197 (2004); 18, 25–66 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Chui, C.K., Sun, Q.: Affine frame decompositions and shift-invariant spaces. Appl. Comput. Harmon. Anal. 20, 74–107 (2006)

    Google Scholar 

  18. Cohen, A., Dyn, N.: Nonstationary subdivision schemes and multiresolution analysis. SIAM J. Math. Anal. 27, 1745–1769 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Cohen, A., Daubechies, I., Vial, P.: Wavelets on the interval and fast wavelet transforms. Appl. Comput. Harmon. Anal. 1, 54–81 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  20. Coifman, R., Maggioni, M.: Diffusion wavelets. Appl. Comput. Harmon. Anal. 21, 53–94 (2006)

    Google Scholar 

  21. Coifman, R., Weiss, G.: Analyses Harmoniques Noncommutative sur Certains Espaces Homogenes. Springer, Berlin Heidelberg New York (1971)

  22. Cramer, R.J.-M., Scholtz, R.A., Win, M.Z.: Evaluation of an ultra wide-band propagation channel. IEEE Trans. Antennas Propag. 50, 561–569 (2002)

    Article  Google Scholar 

  23. Daubechies, I.: Ten Lectures on Wavelets. CBMF Conference Series in Applied Mathematics, 61. SIAM, Philadelphia (1992)

    Google Scholar 

  24. Fornasier, M., Gröchenig, K.: Intrinsic localization of frames. Constr. Approx. 22, 395–415 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Fornasier, M., Rauhut, H.: Continuous frames, function spaces, and the discretization problem. J. Fourier Anal. Appl. 11, 245–287 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Grafakos, L., Lennerd, C.: Characterization of \(L_p(R_n)\) using Gabor frames. J. Fourier Anal. Appl. 7, 101–126 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Gröchenig, K.: Describing functions: atomic decompositions versus frames. Monatsh. Math. 112, 1–42 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  28. Gröchenig, K.: Foundation of time-frequency analysis. Birkhäuser, Boston (2001)

    Google Scholar 

  29. Gröchenig, K.: Localization of frames, Banach frames, and the invertibility of the frame operator. J. Fourier Anal. Appl. 10, 105–132 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Gröchenig, K.: Time-frequency analysis of Sjöstrand class. Rev. Mat. Iberoam. (To appear)

  31. Gröchenig, K., Leinert, M.: Wiener's lemma for twisted convolution and Gabor frames. J. Am. Math. Soc. 17, 1–18 (2003)

    Article  Google Scholar 

  32. Gröchenig, K., Leinert, M.: Symmetry of matrix algebras and symbolic calculus for infinite matrices. Trans. Am. Math. Soc. 358, 2695–2711 (2006)

    Google Scholar 

  33. Hao, Y., Marziliano, P., Vetterli, M., Blu, T.: Sampling and reconstruction of ECG as a signal with a finite rate of innovation. (Submitted to IEEE Trans. Biomed. Eng.)

  34. Higgins, J.R.: Five short stories about the cardinal series. Bull. Am. Math. Soc. 12, 45–89 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  35. Jaffard, S.: Properiétés des matrices bien localisées prés de leur diagonale et quelques applications. Ann. Inst. Henri Poincaré 7, 461–476 (1990)

    MATH  MathSciNet  Google Scholar 

  36. Janssen, A.J.E.M.: Duality and biorthogonality for Weyl–Heisenberg frames. J. Fourier Anal. Appl. 1, 403–436 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  37. Jerri, A.: The Shannon sampling theorem – Its various extensions and applications: A tutorial review. Proc. IEEE 65, 1565–1596 (1977)

    Article  MATH  Google Scholar 

  38. Jia, R.-Q.: Shift-invariant spaces and linear operator equations. Isr. J. Math. 103, 259–288 (1998)

    Article  MATH  Google Scholar 

  39. Jia, R.-Q., Micchelli, C.A.: Using the refinement equations for the construction of pre-wavelets. II. Powers of two. In: Curves and Surfaces (Chamonix-Mont-Blanc, 1990), pp. 209–246. Academic, Boston, Massachusetts (1991)

    Google Scholar 

  40. Kusuma, J., Maravic, I., Vetterli, M.: Sampling with finite rate of innovation: channel and timing estimatation for UWB and GPS. In: IEEE Conference on Communication 2003. Anchorage, AK

  41. Macias, R., Segovia, C.: Lipschitz functions on spaces of homogenous type. Adv. Math. 33, 257–270 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  42. Macias, R., Segovia, C.: A decomposition into atoms of distribution on spaces of homogenous type. Adv. Math. 33, 271–309 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  43. Mallat, S.G.: A Wavelet Tour of Signal Processing. Academic (1999)

  44. Maravic, I., Vetterli, M.: Sampling and reconstruction of signals with finite rate of innovation in the presence of noise. IEEE Trans. Signal Process. 53, 2788–2805 (2005)

    Article  MathSciNet  Google Scholar 

  45. Marziliano, P., Vetterli, M.: Reconstruction of irregular sampled discrete-time band-limited signals with unknown sampling locations. IEEE Trans. Signal Process. 48, 3462–3471 (2000)

    Article  MathSciNet  Google Scholar 

  46. Marziliano, P., Vetterli, M., Blu, T.: Sampling and exact reconstruction of band-limited signals with shot noise. IEEE Trans. Information Theory. 5, 2230–2233 (2006)

    Google Scholar 

  47. Marziliano, P.: Sampling innovations. PhD thesis, Swiss Federal Institute of Technology (April 2001)

  48. Meyer, Y.: Ondelettes et Operateurs. Herman, Paris (1990)

    Book  Google Scholar 

  49. Nagel, A., Stein, E., Waigner, S.: Ball and metrics defined by vector fields I: Basic properties. Acta Math. 155, 103–147 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  50. Plonka, G.: Periodic spline interpolation with shifted nodes. J. Approx. Theory 76, 1–20 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  51. Ron, A., Shen, Z.: Weyl–Heisenberg frames and Riesz bases in \(L_2(R^d)\). Duke Math. J. 89, 237–282 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  52. Ron, A., Shen, Z.: Generalized shift-invariant systems. Constr. Approx. 22, 1–45 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  53. Schumaker, L.L.: Spline Functions: Basic Theory. Wiley & Sons, New York (1981)

    MATH  Google Scholar 

  54. Sjöstrand, J.: An algebra of pseudodifferential operators. Math. Res. Lett. 1, 185–192 (1994)

    MATH  MathSciNet  Google Scholar 

  55. Sun, Q.: Stability of the shifts of global supported distributions. J. Math. Anal. Appl. 261, 113–125 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  56. Sun, Q.: Wiener's lemma for infinite matrices with polynomial off-diagonal decay. C. R. Acad. Sci. Paris, Ser I 340, 567–570 (2005)

    MATH  Google Scholar 

  57. Sun, Q.: Wiener's lemma for infinite matrices. Trans. Am. Math. Soc. (accepted)

  58. Sun, Q.: Non-uniform average sampling and reconstruction of signals with finite rate of innovation. SIAM J. Math. Anal. (submitted)

  59. Sun, Q., Bi, N., Huang, D.: An Introduction to Multiband Wavelets. Zhejiang University Press, Hangzhou (2000)

    Google Scholar 

  60. Vetterli, M., Marziliano, P., Blu, T.: Sampling signals with finite rate of innovation. IEEE Trans. Signal Process. 50, 1417–1428 (2002)

    Article  MathSciNet  Google Scholar 

  61. Young, R.M.: An Introduction to Nonharmonic Fourier Series. Academic, New York (1980)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiyu Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Q. Frames in spaces with finite rate of innovation. Adv Comput Math 28, 301–329 (2008). https://doi.org/10.1007/s10444-006-9021-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-006-9021-4

Keywords

Mathematics Subject Classifications (2000)

Navigation