Advances in Computational Mathematics

, Volume 43, Issue 3, pp 555–580 | Cite as

System identification in dynamical sampling

  • Sui TangEmail author


We consider the problem of spatiotemporal sampling in a discrete infinite dimensional spatially invariant evolutionary process x (n) = A n x to recover an unknown convolution operator A given by a filter \(a \in \ell ^{1}(\mathbb {Z})\) and an unknown initial state x modeled as a vector in \(\ell ^{2}(\mathbb {Z})\). Traditionally, under appropriate hypotheses, any x can be recovered from its samples on \(\mathbb {Z}\) and A can be recovered by the classical techniques of deconvolution. In this paper, we will exploit the spatiotemporal correlation and propose a new sampling scheme to recover A and x that allows us to sample the evolving states x,A x,⋯ ,A N−1 x on a sub-lattice of \(\mathbb {Z}\), and thus achieve a spatiotemporal trade off. The spatiotemporal trade off is motivated by several industrial applications (Lu and Vetterli, 2249–2252, 2009). Specifically, we show that
$$\{x(m\mathbb {Z}), Ax(m\mathbb {Z}), \cdots , A^{N-1}x(m\mathbb {Z}): N \geq 2m\}$$
contains enough information to recover a typical “low pass filter” a and x almost surely, thus generalizing the idea of the finite dimensional case in Aldroubi and Krishtal, arXiv:1412.1538 (2014). In particular, we provide an algorithm based on a generalized Prony method for the case when both a and x are of finite impulse response and an upper bound of their support is known. We also perform a perturbation analysis based on the spectral properties of the operator A and initial state x, and verify the results by several numerical experiments. Finally, we provide several other numerical techniques to stabilize the proposed method, with some examples to demonstrate the improvement.


Discrete fourier analysis Distributed sampling Reconstruction Channel estimation 

Mathematics Subject Classification (2010)

Primary 94A20 94A12 42C15 15A29 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aldroubi, A., Krishtal, I.: Krylov subspace methods in dynamical sampling. arXiv:1412.1538 (2014)
  2. 2.
    Aldroubi, A., Molter, U., Cabrelli, C., Tang, S.: Dynamical Sampling. arXiv:1409.8333. To appear in Applied And Computational Harmonic Analysis
  3. 3.
    Adcock, B., Hansen, A.: A generalized sampling theorem for stable reconstructions in arbitrary bases. J. Fourier Anal. Appl. 18(4), 685–716 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Sun, Q.: Nonuniform average sampling and reconstruction of signals with finite rate of innovation. SIAM J. Math. Anal. 38(5), 1389–1422 (2006/07). electronicMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Adcock, B., Hansen, A.: Generalized sampling and the stable and accurate reconstruction of piecewise analytic functions from their Fourier coefficients. Math. Comp. 84, 237–270 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Slepian, D., Wolf, J.: Noiseless coding of correlated information sources. IEEE Trans. Inf. Theory 19, 471 –480 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gilbert, A., Indyk, P., Iwen, M.A., Schmidt, L.: Recent Developments in the Sparse Fourier Transform. IEEE Signal Process. Mag. 31(5), 91–100 (2014)CrossRefGoogle Scholar
  8. 8.
    Iwen, M.A.: Combinatorial sublinear-time Fourier algorithms. Found. Comput. Math. 10, 303–338 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Iwen, M.A.: Improved approximation guarantees for sublinear-time Fourier algorithms. Appl. Comput. Harmon. Anal. 34, 57–82 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lawlor, D., Wang, Y., Christlieb, A.: Adaptive sub-linear time Fourier algorithms. Adv. Adapt. Data Anal. 5(1) (2013)Google Scholar
  11. 11.
    Aldroubi, A., Davis, J., Krishtal, I.: Exact reconstruction of signals in evolutionary systems via spatiotemporal trade-off. J. Fourier Anal. Appl. 21(1), 11–31 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Peter, T., Plonka, G.: A generalized Prony method for reconstruction of sparse sums of eigenfunctions of linear operators. Inverse Probl. 29, 025001 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Sun, Q.: Frames in spaces with finite rate of innovation. Adv. Comput. Math. 28(4), 301–329 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Aldroubi, A., Krishtal, I., Weber, E. In: Balan, R., Begue, M., Benedetto, J., Czaja, W., Okodujou, K. (eds.) : Finite dimensional dynamical sampling: an overview. Excursions in harmonic analysis, vol. 3. Applied Numerical Harmonic Analysis, Birkhäuser/Springer, New York (2015). To appearGoogle Scholar
  15. 15.
    Aldroubi, A., Gröchenig, K.: Nonuniform sampling and reconstruction in shift-invariant spaces. SIAM Rev. 43, 585–620 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Bass, R.F., Gröchenig, K.: Relevant sampling of bandlimited functions, Illinois J. Math To appear (2012)Google Scholar
  17. 17.
    Christensen, J., Ólafsson, G.: Sampling in spaces of bandlimited functions on commutative spaces. In: Applied and Numerical Harmonic Analysis book Excursions in Harmonic Analysis, vol. 1, pp. 35–69 (2013)Google Scholar
  18. 18.
    Jorgensen, P., Tian, Feng: Discrete reproducing kernel Hilbert spaces: Sampling and distribution of Dirac-masses. arXiv:1501.02310
  19. 19.
    Iosevich, A., Mayeli, A.: Exponential bases, Paley-Wiener spaces, and applications. J. Funct. Anal. 268(2), 363–375 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Adcock, B., Hansen, A., Herrholz, E., Teschke, G.: Generalized sampling: extensions to frames and inverse and ill-posed problems. Inverse Probl. 29, 015008Google Scholar
  21. 21.
    Aldroubi, A., Davis, J., Krishtal, I.: Dynamical sampling: time space trade-off. Appl. Comput. Harmon. Anal. 34(3), 495–503 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Roy, R., Paulraj, A., Kailath, T.: ESPRIT-A subspace rotation ap- proach to estimation of parameters of cisoids in noise. IEEE Trans. Acoust., Speech Signal Process. 34(5), 1340–1342 (1986)CrossRefGoogle Scholar
  23. 23.
    Aceska, R., Tang, S.: Dynamical sampling in hybrid shift invariant spaces. In: Furst, V., Kornelsen, K., Weber, E. (eds.) Operator Methods in Wavelets, Tilings, and Frame. To appear, vol. 626. Contemporary Mathematics, American Mathematics Society, Providence (2014)Google Scholar
  24. 24.
    Borodchov, S., Hardin, D., Saff, E.B.: Minimal Discrete Energy on the Sphere and other Manifolds, Springer. To appearGoogle Scholar
  25. 25.
    Aceska, R., Aldroubi, A., Davis, J., Petrosyan, A.: Dynamical sampling in shift invariant spaces. In: Mayeli, A., Iosevich, A., Jorgensen, P., Ólafsson, G. (eds.) Commutative and Noncommutative Harmonic Analysis and Applications, vol. 603, pp. 139–148. Contemporary Mathematics, American Mathematical Society, Providence (2013)CrossRefGoogle Scholar
  26. 26.
    Reise, G., Matz, G., Gröchenig, K.: Distributed field reconstruction in wireless sensor networks based on hybrid shift-invariant spaces. IEEE Trans Signal Processi 60(10), 5426–5439 (2012)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Cadzow, J.A.: Signal enhancement—A composite property mapping algorithm. IEEE Trans. Acoust., Speech Signal Process. 36, 49–67 (1988)CrossRefzbMATHGoogle Scholar
  28. 28.
    Hua, Y., Sarar, T.K.: Matrix Pencil Method for Estimating Parameters of Exponentially Damped/ Undamped Sinusoids in Noise. IEEE Trans. Acoust., Speech Signal Process. 38, 814–824 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Hua, Yingbo, Sarar, T.K.: On SVD for Estimating Generalized Eigenvalues of Singular Matrix Pencil in Noise. IEEE Trans. Signal Process. 39(4), 892–900 (1991)CrossRefGoogle Scholar
  30. 30.
    Reise, G., Matz, G.: Distributed sampling and reconstruction of non-bandlimited fields in sensor networks based on shift-invariant spaces. In: Proceedings ICASSP, pp. 2061–2064. Taipeh, Taiwan (2009)Google Scholar
  31. 31.
    Reise, G., Matz, G.: Reconstruction of time-varying fields in wireless sensor networks using shift-invariant spaces: interative algorithms and impact of sensor localization errors. In: Proceedings SPAWC, pp. 1–5. Marrakech, Morocco (2010)Google Scholar
  32. 32.
    Jorgensen, P.: A sampling theory for infinite weighted graphs. Opuscula Math. 31(2), 209–236 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Nashed, M.Z., Sun, Q.: Sampling and reconstruction of signals in a reproducing kernel subspace of L p(R d). J. Funct Anal. 258(7), 2422–2452 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Lu, Y., Vetterli, M.: Spatial super-resolution of a diffusion field by temporal oversampling in sensor networks. In: IEEE International Conference on Acoustics, Speech and Signal Processing, 2009. ICASSP 2009, pp. 2249 –2252 (2009)CrossRefGoogle Scholar
  35. 35.
    Hormati, A., Roy, O., Lu, Y., Vetterli, M.: Distributed sampling of signals linked by sparse filtering: theory and applications. IEEE Trans. Signal Process. 58(3), 1095–1109 (2010)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Daubechies, I.: Ten lectures on wavelets CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1992)Google Scholar
  37. 37.
    Han, D., Nashed, M.Z., Sun, Q.: Sampling expansions in reproducing kernel Hilbert and Banach spaces. Numer. Funct. Anal. Optim. 30(9-10), 971–987 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: A survey. Comput. Netw. 38, 393–422 (2002)CrossRefGoogle Scholar
  39. 39.
    Blu, T., Dragotti, P.L., Vetterli, M., Marziliano, P., Coulot, L.: Sparse sampling of signal innovations. IEEE Signal Process. Mag. 25, 31–40 (2008)CrossRefGoogle Scholar
  40. 40.
    Badeau, R., David, B., Richard, G.: High-resolution spectral analysis of mixtures of complex exponentials modulated by polynomials. IEEE Trans. Signal Process. 54(4), 1341–1350 (2006)CrossRefGoogle Scholar
  41. 41.
    Vinberg, E.B.: A course in algebra. American Mathematical Society, Providence, R.I (2003). ISBN 0-8218-3413-4CrossRefzbMATHGoogle Scholar
  42. 42.
    Benedetto, J. J., Ferreira, P.J.S.G. (eds.): Modern sampling theory. Modern sampling theory, Applied and Numerical Harmonic Analysis, Birkhäuser Boston Inc., Boston, MA (2001)zbMATHGoogle Scholar
  43. 43.
    Nashed, M.Z.: Inverse problems, moment problems, signal processing un menage a trois, Mathematics in science and technology, pp. 2–19. World Scientific Publications, Hackensack, NJ (2011)Google Scholar
  44. 44.
    Eisinberg, A., Franzé, G., Pugliese, P.: Vandermonde matrices on Chebyshev points. Linear Algebra Appl. 283(1–3), 205–219 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Timan, A.: Theory of approximation of functions of a real variable. Courier Dover Publications, 37 (1963)Google Scholar
  46. 46.
    Gautschi, W.: Norm estimates for inverses of Vandermonde matrices. Numer. Math. 23, 337–347 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Gautschi, W.: How (Un)stable Are Vandermonde Systems. Asymptotic and computational analysis (Winnipeg, MB, 1989) Lecture Notes in Pure and Applications of Mathematics, vol. 124, pp. 193–210. Dekker, New York (1990)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of MathematicsVanderbilt UniversityNashvilleUSA

Personalised recommendations