Skip to main content
Log in

On a Bi-dimensional Chemo-repulsion Model with Nonlinear Production and a Related Optimal Control Problem

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this paper, we study the following parabolic chemo-repulsion with nonlinear production model in \(2D\) domains:

$$ \left \{ \textstyle\begin{array}{rcl} \partial _{t}u-\Delta u&=&\nabla \cdot (u\nabla v), \\ \partial _{t}v-\Delta v+v&=&u^{p}+fv\, 1_{\varOmega _{c}}, \end{array}\displaystyle \right . $$

with for \(1< p\leq 2\). This system is related to a bilinear control problem, where the state \((u,v)\) is the cell density and the chemical concentration respectively, and the control \(f\) acts in a bilinear form in the chemical equation. We prove the existence and uniqueness of global-in-time strong state solution for each control, and the existence of global optimum solution. Afterwards, we deduce the optimality system for any local optimum via a Lagrange multipliers theorem, proving extra regularity of the Lagrange multipliers. The case \(p>2\) remains open.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Araujo, A.L.A., De Magalhães, P.M.D.: Existence of solutions and optimal control for a model of tissue invasion by solid tumours. J. Math. Anal. Appl. 421, 842–877 (2015)

    Article  MathSciNet  Google Scholar 

  2. Chaplain, M.A., Lolas, G.: Mathematical modelling of cancer cell invasion of tissue: the role of the urokinase plasminogen activation system. Math. Models Methods Appl. Sci. 15, 1685–1734 (2005)

    Article  MathSciNet  Google Scholar 

  3. Chaplain, M.A., Stuart, A.: A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor. IMA J. Math. Appl. Med. Biol. 10, 149–168 (1993)

    Article  Google Scholar 

  4. Cieślak, T., Laurençot, P., Morales-Rodrigo, C.: Global existence and convergence to steady states in a chemorepulsion system. Parabolic and Navier-Stokes equations. Part 1. In: Banach Center Publ. vol. 81, pp. 105–117. Polish Acad. Sci. Inst. Math., Warsaw (2008)

    Google Scholar 

  5. Feireisl, E., Novotný, A.: Singular Limits in Thermodynamics of Viscous Fluids. Advances in Mathematical Fluid Mechanics. Birkhäuser, Basel (2009)

    Book  Google Scholar 

  6. Fister, K.R., Mccarthy, C.M.: Optimal control of a chemotaxis system. Q. Appl. Math. 61, 193–211 (2003)

    Article  MathSciNet  Google Scholar 

  7. Guillén-González, F., Rodríguez-Bellido, M.A., Rueda-Gómez, D.A.: Study of a chemo-repulsion model with quadratic production. Part I: analysis of the continuous problem and time-discrete numerical schemes. Comput. Math. Appl. 80(5), 692–713 (2020)

    Article  MathSciNet  Google Scholar 

  8. Guillén-González, F., Rodríguez-Bellido, M.A., Rueda-Gómez, D.A.: Study of a chemo-repulsion model with quadratic production. Part II: analysis of an unconditional energy-stable fully discrete scheme. Comput. Math. Appl. 80(5), 636–652 (2020)

    Article  MathSciNet  Google Scholar 

  9. Guillén-González, F., Rodríguez-Bellido, M.A., Rueda-Gómez, D.A.: Analysis of a chemo-repulsion model with nonlinear production: the continuous problem and unconditionally energy stable fully discrete schemes. Submitted. arXiv:1807.05078v2

  10. Guillén-González, F., Mallea-Zepeda, E., Rodríguez-Bellido, M.A.: Optimal bilinear control problem related to a chemo-repulsion system in 2D domains. ESAIM Control Optim. Calc. Var. 26, paper No. 29, 21pp (2020)

    MathSciNet  MATH  Google Scholar 

  11. Guillén-González, F., Mallea-Zepeda, E., Rodríguez-Bellido, M.A.: A regularity criterion for a 3D chemo-repulsion system and its application to a bilinear optimal control problem. SIAM J. Control Optim. 58(3), 1457–1490 (2020)

    Article  MathSciNet  Google Scholar 

  12. Hillen, T., Painter, K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)

    Article  MathSciNet  Google Scholar 

  13. Maini, P.K., Myerscough, M.R., Winters, K.H., Murray, J.D.: Bifurcating spatially heterogeneous solutions in a chemotaxis model for biological pattern generation. Bull. Math. Biol. 53, 701–719 (1991)

    Article  Google Scholar 

  14. Mantzaris, N.V., Webb, S., Othmer, H.G.: Mathematical modeling of tumor-induced angiogenesis. J. Math. Biol. 49, 111–187 (2004)

    Article  MathSciNet  Google Scholar 

  15. Myerscough, M.R., Maini, P.K., Painter, K.J.: Pattern formation in a generalized chemotactic model. Bull. Math. Biol. 60, 1–26 (1998)

    Article  Google Scholar 

  16. Necas, L.: Les méthodes Directes en Théorie des Equations Elliptiques. Editeurs Academia, Prague (1967)

    MATH  Google Scholar 

  17. Nirenberg, L.: On elliptic partial differential equations. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (3). 13, 115–162 (1959)

    MathSciNet  MATH  Google Scholar 

  18. Rodríguez-Bellido, M.A., Rueda-Gómez, D.A., Villamizar-Roa, E.J.: On a distributed control problem for a coupled chemotaxis-fluid model. Discrete Contin. Dyn. Syst., Ser. B 23, 557–571 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Ryu, S.-U., Yagi, A.: Optimal control of Keller-Segel equations. J. Math. Anal. Appl. 256, 45–66 (2001)

    Article  MathSciNet  Google Scholar 

  20. Ryu, S.U.: Optimal control for a parabolic system modelling chemotaxis. Trends Math. 6, 45–49 (2003)

    Google Scholar 

  21. Winkler, M.: A critical blow-up exponent in a chemotaxis system with nonlinear signal production. Nonlinearity 31, 2031–2056 (2018)

    Article  MathSciNet  Google Scholar 

  22. Tao, Y.: Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity. Discrete Contin. Dyn. Syst., Ser. B 18, 2705–2722 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Tindall, M.J., Maini, P.K., Porter, S.L., Armitage, J.P.: Overview of mathematical approaches used to model bacterial chemotaxis. II. Bacterial populations. Bull. Math. Biol. 70, 1570–1607 (2008)

    Article  MathSciNet  Google Scholar 

  24. Tröltzsch, F.: Optimal Control of Partial Differential Equations. Theory, Methods and Applications. AMS, Providence (2010)

    MATH  Google Scholar 

  25. Tyson, R., Lubkin, S.R., Murray, J.D.: Model and analysis of chemotactic bacterial patterns in a liquid medium. J. Math. Biol. 38, 359–375 (1999)

    Article  MathSciNet  Google Scholar 

  26. Woodward, D., Tyson, R., Myerscough, M., Murray, J.D., Budrene, E., Berg, H.: Spatio-temporal patterns generated by salmonella typhimurium. Biophys. J. 68, 2181–2189 (1995)

    Article  Google Scholar 

  27. Zowe, J., Kurcyusz, S.: Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 6, 49–62 (1979)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

F. Guillén-González has been partially financed by the Project PGC2018-098308-B-I00, funded by FEDER / Ministerio de Ciencia e Innovación—Agencia Estatal de Investigación. E. Mallea-Zepeda has been supported by Proyecto UTA-Mayor 4751-20, Universidad de Tarapacá. E.J. Villamizar-Roa has been supported by Vicerrectoría de Investigación y Extensión of Universidad Industrial de Santander, proyecto de año sabático.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Exequiel Mallea-Zepeda.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillén-González, F., Mallea-Zepeda, E. & Villamizar-Roa, É.J. On a Bi-dimensional Chemo-repulsion Model with Nonlinear Production and a Related Optimal Control Problem. Acta Appl Math 170, 963–979 (2020). https://doi.org/10.1007/s10440-020-00365-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-020-00365-3

Keywords

Mathematics Subject Classification (2010)

Navigation