Skip to main content
Log in

A hyperbolic–elliptic–elliptic system of an attraction–repulsion chemotaxis model with nonlinear productions

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

This paper studies the hyperbolic–elliptic–elliptic system of an attraction–repulsion chemotaxis model with nonlinear productions and logistic source: \(u_{t}=-\chi \nabla \cdot (u\nabla v)+\xi \nabla \cdot (u\nabla w)+\mu u(1-u^k)\), \(0=\Delta v+\alpha u^q-\beta v\), \( 0=\Delta w+\gamma u^r-\delta w\), in a bounded domain \(\Omega \subset \mathbb {R}^n\), \(n\ge 1\), subject to the non-flux boundary condition. We at first establish the local existence of solutions (the so-called strong \(W^{1,p}\)-solutions, satisfying the hyperbolic equation weakly and solving the elliptic ones classically) to the model via applying the viscosity vanishing method and then give criteria on global boundedness versus finite- time blowup for them. It is proved that if the attraction is dominated by the logistic source or the repulsion with \(\max \{r,k\}>q\), the solutions would be globally bounded; otherwise, the finite-time blowup of solutions may occur whenever \(\max \{r,k\}<q\). Under the balance situations with \(q=r=k\), \(q=r>k\) or \(q=k>r\), the boundedness or possible finite-time blowup would depend on the sizes of the coefficients involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. DiBenedetto, Degenerate Parabolic Equations, Springer, New York, 1993.

    Book  MATH  Google Scholar 

  2. A. Friedman. Partial Differential Equations. Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969.

  3. A. Friedman. Partial Diferential Equations. Dover Books on Mathematics Series. Dover Publications, Mineola, New York, Incorporated, 2008.

  4. D. Gilbarg and N. Trudinger. Elliptic Partial Diferential Equations of Second Order, Classics in Mathematics. Springer, Berlin, 2001, Reprint of the 1998 edition.

  5. X. He , S.N. Zheng, Convergence rate estimates of solutions in a higher dimensional chemotaxis system with logistic source, J. Math. Anal. Appl. 436 (2016), 970–982.

    Article  MathSciNet  MATH  Google Scholar 

  6. E. Galakhov, O. Salieva, J.I. Tello, On a Parabolic-Elliptic system with chemotaxis and logistic type growth, J. Differ. Equ. 261 (2016), 4631–4647.

    Article  MathSciNet  MATH  Google Scholar 

  7. M.A. Herrero, J.J.L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. 24 (1997) 633–683 .

    MathSciNet  MATH  Google Scholar 

  8. T. Hillen, K. J. Painter, A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58 (2009), 183–217.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Horstmann, From 1970 until present: The Keller–Segel model in chemotaxis and its consequences I, Jahresber. Deutsch. Math. Verein. 105 (2003), 103–165.

    MathSciNet  MATH  Google Scholar 

  10. D. Horstmann, From 1970 until present: The Keller–Segel model in chemotaxis and its consequences II, Jahresber. Deutsch. Math. Verein. 106 (2004), 51–69.

    MathSciNet  MATH  Google Scholar 

  11. D. Horstmann, M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ. 215 (2005), 52–107.

    Article  MathSciNet  MATH  Google Scholar 

  12. W. Jäger, S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Am. Math. Soc. 329 (1992), 819–824.

    Article  MathSciNet  MATH  Google Scholar 

  13. K. Kang, A. Stevens, Blowup and global solutions in a chemotaxis-growth system, Nonlinear Anal. 135 (2016), 57–72.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Lankeit, Chemotaxis can prevent thresholds on population density, Discrete Contin. Dyn. Syst. Ser. B 20 (2015), 1499–1527.

    Article  MathSciNet  MATH  Google Scholar 

  15. G.M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc , 1996.

    Book  MATH  Google Scholar 

  16. J.D. Murray. Mathematical Biology, I. An Introduction. 3rd edn. Interdisciplinary Applied Mathematics, 17. pages xxiv+551. Springer, New York, 2002.

  17. E. Nakaguchi and M. Efendiev, On a new dimension estimate of the global attractor for chemotaxisgrowth systems, Osaka J. Math. 45 (2008), 273–281.

    MathSciNet  MATH  Google Scholar 

  18. E. Nakaguchi and K. Osaki, Global existence of solutions to a parabolic–parabolic system for chemotaxis with weak degradation, Nonlinear Anal. 74 (2011), 286–297.

    Article  MathSciNet  MATH  Google Scholar 

  19. E. Nakaguchi and K. Osaki, Global solutions and exponential attractors of a parabolic-parabolic system for chemotaxis with subquadratic degradation, Discrete Contin. Dyn. Syst. Ser. B 18 (2013), 2627– 2646.

    Article  MathSciNet  MATH  Google Scholar 

  20. T. Ogawa, Y. Taniuchi, On blow-up criteria of smooth solutions to the 3-D Euler equations in a bounded domain, J. Differ. Equ. 190 (2003), 39–63.

    Article  MathSciNet  MATH  Google Scholar 

  21. K. Osaki, A. Yagi, Global existence of a chemotaxis-growth system in \({\mathbb{R}}^2\), Adv. Math. Sci. Appl. 12 (2002), 587–606.

    MathSciNet  MATH  Google Scholar 

  22. J. Tello, M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differ. Equ. 32 (2007), 849–877.

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Temam, Navier-Stokes Equations, North-Holland Publishing, 1977.

    MATH  Google Scholar 

  24. Z.A. Wang, T. Xiang. A class of chemotaxis systems with growth source and nonlinear secretion, arXiv:1510.07204, 2015.

  25. W. Wang, M.Y. Ding, Y. Li, Global boundedness in a quasilinear chemotaxis system with general density-signal governed sensitivity, J. Differ. Equ. 263 (2017), 2851–2873.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Winkler, Chemotaxis with logistic source: very weak global solutions and their boundedness properties, J. Math. Anal. Appl. 348 (2008) 708–729.

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ. 248 (2010), 2889–2905.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl. 384 (2011) 261–272.

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl. 100 (2013), 748–767.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Winkler, How far can chemotactic cross-diffusion enforce exceeding carrying capacities? J. Nonlinear Sci. 24 (2014) 809–855.

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Winkler. Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems. Discrete Contin. Dyn. Syst. Ser. B. to appear.

  32. Z.Q. Wu, J.X. Yin, C.P. Wang, Elliptic and Parabolic Equations, . World Scientific Publishing, Co. Pte. Ltd., Hackensack, NJ, 2006.

    Book  MATH  Google Scholar 

  33. Q.S. Zhang, Y. Li, An attraction–repulsion chemotaxis system with logistic source, Z. Angew. Math. Mech. 96 (2016), 570–584.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sining Zheng.

Additional information

Supported by the National Natural Science Foundation of China (11171048) and the Science Foundation of Liaoning Education Department (LYB201601).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, M., Hong, L. & Zheng, S. A hyperbolic–elliptic–elliptic system of an attraction–repulsion chemotaxis model with nonlinear productions. J. Evol. Equ. 18, 973–1001 (2018). https://doi.org/10.1007/s00028-018-0428-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-018-0428-4

Mathematics Subject Classification

Keywords

Navigation