Skip to main content
Log in

Ex Vivo Uniaxial Tensile Properties of Rat Uterosacral Ligaments

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This manuscript presents new experimental methods for testing the ex vivo tensile properties of the uterosacral ligaments (USLs) in rats. The USL specimens (\(n=21\)) were carefully dissected to preserve their anatomical attachments, and they were loaded along their main in vivo loading direction (MD) using a custom-built uniaxial tensile testing device. During loading, strain maps in both the MD and the perpendicular direction (PD) were collected using the digital image correlation technique. The mean (± S.E.M.) maximum load and displacement at the maximum load were \(0.98\pm 0.30\) N and \(17.53\pm 3.87\) mm, respectively. The USLs were found to be highly heterogeneous structures, with some specimens experiencing strains in the MD that were lower than \(5\%\) and others reaching strains that were up to \(60\%\) in the intermediate region. At 0.5 kPa stress, a value reached by all the specimens, the mean strain in the MD was \(9.15 \pm 1.30\%\) while at 5 kPa stress, a value achieved only by 9 out of the 21 specimens, the mean strain increased to \(23.87 \pm 3.64\%\). Under uniaxial loading, the specimens also elongated in the PD, with strains that were one order of magnitude lower than the strains in the MD; at the 0.5 kPa stress, the mean strain in the PD was recorded to be \(0.69 \pm 0.66\%\) and, at the 5 kPa stress, the strain in the PD was \(6.99 \pm 2.87\%\). The directions of maximum principal strains remained almost unchanged with the increase in stress, indicating that little microstructural re-organization occurred due to uniaxial loading. This study serves as a springboard for future investigations on the supportive function of the USLs in the rat model by offering guidelines on testing methods that capture their complex mechanical behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8
FIGURE 9
FIGURE 10
FIGURE 11
FIGURE 12

Similar content being viewed by others

References

  1. Baah-Dwomoh, A., M. Alperin, M. Cook, and R. De Vita. Mechanical analysis of the uterosacral ligament: Swine vs human. Ann. Biomed. Eng. 46(12):2036–2047, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bowen, S. T., P. A. Moalli, S. D. Abramowitch, M. E. Lockhart, A. C. Weidner, C. A. Ferrando, C. W. Nager, H. E. Richter, C. R. Rardin, Y. M. Komesu, et al. Defining mechanisms of recurrence following apical prolapse repair based on imaging criteria. Am. J. Obstet. Gynecol. 225(5):506, 2021.

    Article  PubMed Central  Google Scholar 

  3. Buller, J. L., J. R. Thompson, G. W. Cundiff, L. K. Sullivan, M. A. S. Ybarra, and A. E. Bent. Uterosacral ligament: Description of anatomic relationships to optimize surgical safety. Obstet. Gynecol. 97(6):873–879, 2001.

    CAS  PubMed  Google Scholar 

  4. Butler, D. L., E. S. Grood, F. R. Noyes, R. F. Zernicke, and K. Brackett. Effects of structure and strain measurement technique on the material properties of young human tendons and fascia. J. Biomech. 17(8):579–596, 1984.

    Article  CAS  PubMed  Google Scholar 

  5. Campbell, R. M. The anatomy and histology of the sacrouterine ligaments. Am. J. Obstet. Gynecol. 59(1):1–12, 1950.

    Article  CAS  PubMed  Google Scholar 

  6. Collins, S. A., S. A. Downie, T. R. Olson, and M. S. Mikhail. Nerve injury during uterosacral ligament fixation: a cadaver study. Int. Urogynecol. J. 20(5):505–508, 2009.

    Article  Google Scholar 

  7. Danso, E. K., J. D. Schuster, I. Johnson, E. W. Harville, L. R. Buckner, L. Desrosiers, L. R. Knoepp, and K. S. Miller. Comparison of biaxial biomechanical properties of post-menopausal human prolapsed and non-prolapsed uterosacral ligament. Sci. Rep. 10(1):1–14, 2020.

    Article  Google Scholar 

  8. DeLancey, J. O. L. Anatomic aspects of vaginal eversion after hysterectomy. Am. J. Obstet. Gynecol. 166(6):1717–1728, 1992.

    Article  CAS  PubMed  Google Scholar 

  9. Diwadkar, G. B., M. D. Barber, B. Feiner, C. Maher, and J. E. Jelovsek. Complication and reoperation rates after apical vaginal prolapse surgical repair: a systematic review. Obstet. Gynecol. 113(2):367–373, 2009.

    Article  PubMed  Google Scholar 

  10. Donaldson, K., A. Huntington, and R. De Vita. Mechanics of uterosacral ligaments: current knowledge, existing gaps, and future directions. Ann. Biomed. Eng. 49(8):1788–1804, 2021.

    Article  PubMed  Google Scholar 

  11. Donaldson, K., J. Thomas, Y. Zhu, S. Clark-Deener, M. Alperin, and R. De Vita. In-plane and out-of-plane deformations of gilt utero-sacral ligaments. J. Mech. Behav. Biomed. Mater. 131:105249, 2022.

    Article  CAS  PubMed  Google Scholar 

  12. Giugale, L. E., A. I. Melnyk, K. M. Ruppert, G. S. Napoe, E. S. Lavelle, and M. S. Bradley. Total vaginal hysterectomy with uterosacral ligament suspension compared with supracervical hysterectomy with sacrocervicopexy for uterovaginal prolapse. Obstet. Gynecol. 138(3):435–442, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Holt, E. US FDA rules manufacturers to stop selling mesh devices. Lancet. 393(10182):1686, 2019.

    Article  PubMed  Google Scholar 

  14. Iwanaga, R., D. J. Orlicky, J. Arnett, M. K. Guess, K. J. Hurt, and K. A. Connell. Comparative histology of mouse, rat, and human pelvic ligaments. Int. Urogynecol. J. 27(11):1697–1704, 2016.

    Article  PubMed  Google Scholar 

  15. Knight, K. M., P. A. Moalli, and S. D. Abramowitch. Preventing mesh pore collapse by designing mesh pores with auxetic geometries: a comprehensive evaluation via computational modeling. J. Biomech. Eng. 140(5):051005, 2018.

    Article  Google Scholar 

  16. Liang, R., S. Abramowitch, K. Knight, S. Palcsey, A. Nolfi, A. Feola, S. Stein, and P. A. Moalli. Vaginal degeneration following implantation of synthetic mesh with increased stiffness. BJOG. 120(2):233–243, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lowder, J. L., K. M. Debes, D. K. Moon, N. Howden, S. D. Abramowitch, and P. A. Moalli. Biomechanical adaptations of the rat vagina and supportive tissues in pregnancy to accommodate delivery. Obstet. Gynecol. 109(1):136–143, 2007.

    Article  PubMed  Google Scholar 

  18. Luo, J., T. M. Smith, J. A. Ashton-Miller, and J. O. L. DeLancey. In vivo properties of uterine suspensory tissue in pelvic organ prolapse. J. Biomech. Eng. 136(2):021016, 2014.

    Article  PubMed  Google Scholar 

  19. Luyckx, T., M. Verstraete, K. De Roo, W. De Waele, J. Bellemans, and J. Victor. Digital image correlation as a tool for three-dimensional strain analysis in human tendon tissue. J. Exp. Orthop. 1(1):1–9, 2014.

    Article  Google Scholar 

  20. Mallett, K. F., and E. M. Arruda. Digital image correlation-aided mechanical characterization of the anteromedial and posterolateral bundles of the anterior cruciate ligament. Acta Biomater. 56:44–57, 2017.

    Article  PubMed  Google Scholar 

  21. Martins, P., A. L. Silva-Filho, A. M. R. M. Fonseca, A. Santos, L. Santos, T. Mascarenhas, R. M. N. Jorge, and A. M. Ferreira. Strength of round and uterosacral ligaments: a biomechanical study. Arch. Gynecol. Obstetr. 287(2):313–318, 2013.

    Article  Google Scholar 

  22. Miller, B. J., B. K. Jones, J. S. Turner, S. R. Caliari, and M. H. Vaughan. Development of a uterosacral ligament suspension rat model. J. Vis. Exp. 2022. https://doi.org/10.3791/64311.

    Article  PubMed  Google Scholar 

  23. Moalli, P. A., N. S. Howden, J. L. Lowder, J. Navarro, K. M. Debes, S. D. Abramowitch, and S. L. Y. Woo. A rat model to study the structural properties of the vagina and its supportive tissues. Am. J. Obstet. Gynecol. 192(1):80–88, 2005.

    Article  PubMed  Google Scholar 

  24. Nagelli, C. V., A. Hooke, N. Quirk, C. L. De Padilla, T. E. Hewett, M. van Griensven, M. Coenen, L. Berglund, C. H. Evans, and S. A. Müller. Mechanical and strain behaviour of human Achilles tendon during in vitro testing to failure. Eur. Cells Mater. 43:153–161, 2022.

    Article  CAS  Google Scholar 

  25. Nager, C. W., A. G. Visco, H. E. Richter, C. R. Rardin, Y. Komesu, H. S. Harvie, H. M. Zyczynski, M. F. R. Paraiso, D. Mazloomdoost, A. Sridhar, et al. Effect of sacrospinous hysteropexy with graft vs vaginal hysterectomy with uterosacral ligament suspension on treatment failure in women with uterovaginal prolapse: 5-year results of a randomized clinical trial. Am. J. Obstet. Gynecol. 225(2):153, 2021.

    Article  PubMed Central  Google Scholar 

  26. Pack, E., J. Stewart, M. Rhoads, J. Knight, S. Clark, D. G. Schmale III., and R. De Vita. Effects of short-term moderate ZEN consumption on uterosacral ligament elasticity in pubertal gilts. Res. Vet. Sci. 133:202–209, 2020.

    Article  CAS  PubMed  Google Scholar 

  27. Reay Jones, N. H. J., J. C. Healy, L. J. King, S. Saini, S. Shousha, and T. G. Allen-Mersh. Pelvic connective tissue resilience decreases with vaginal delivery, menopause and uterine prolapse. Br. J. Surg. 90(4):466–472, 2003.

    Article  CAS  PubMed  Google Scholar 

  28. Rivaux, G., C. Rubod, B. Dedet, M. Brieu, B. Gabriel, and M. Cosson. Comparative analysis of pelvic ligaments: A biomechanics study. Int. Urogynecol. J. 24(1):135–139, 2013.

    Article  PubMed  Google Scholar 

  29. Shahryarinejad, A., T. R. Gardner, J. M. Cline, W. N. Levine, H. A. Bunting, M. D. Brodman, C. J. Ascher-Walsh, R. J. Scotti, and M. D. Vardy. Effect of hormone replacement and selective estrogen receptor modulators (SERMs) on the biomechanics and biochemistry of pelvic support ligaments in the cynomolgus monkey (Macaca fascicularis). Am. J. Obstet. Gynecol. 202(5):485-e1, 2010.

    Article  Google Scholar 

  30. Smith, T. M., J. Luo, Y. Hsu, J. Ashton-Miller, and J. O. L. DeLancey. A novel technique to measure in vivo uterine suspensory ligament stiffness. Am. J. Obstet. Gynecol. 209(5):484-e1, 2013.

    Article  Google Scholar 

  31. Tan, T., F. M. Davis, D. D. Gruber, J. C. Massengill, J. L. Robertson, and R. De Vita. Histo-mechanical properties of the swine cardinal and uterosacral ligaments. J. Mech. Behav. Biomed. Mater. 42:129–137, 2015.

    Article  CAS  PubMed  Google Scholar 

  32. Vardy, M. D., T. R. Gardner, F. Cosman, R. J. Scotti, M. S. Mikhail, A. O. Preiss-Bloom, J. K. Williams, J. M. Cline, and R. Lindsay. The effects of hormone replacement on the biomechanical properties of the uterosacral and round ligaments in the monkey model. Am. J. Obstet. Gynecol. 192(5):1741–1751, 2005.

    Article  CAS  PubMed  Google Scholar 

  33. Vu, D., B. T. Haylen, K. Tse, and A. Farnsworth. Surgical anatomy of the uterosacral ligament. Int. Urogynecol. J. 21(9):1123–1128, 2010.

    Article  PubMed  Google Scholar 

  34. Zernicke, R. F., D. L. Butler, E. S. Grood, and M. S. Hefzy. Strain topography of human tendon and fascia. J. Biomech. Eng. 106(2):177–180, 1984.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding was provided by National Science Foundation Grant No. 1804432. The authors would like to thank the Jarome Lab at Virginia Tech for providing the rats used in this study and Dr. Bonni Beaupied for providing feedback on the description of the dissection protocol in this manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaella De Vita.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donaldson, K., De Vita, R. Ex Vivo Uniaxial Tensile Properties of Rat Uterosacral Ligaments. Ann Biomed Eng 51, 702–714 (2023). https://doi.org/10.1007/s10439-023-03135-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03135-y

Keywords

Navigation