Skip to main content

Advertisement

Log in

Biaxial mechanical properties of swine uterosacral and cardinal ligaments

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Mechanical alterations to pelvic floor ligaments may contribute to the development and progression of pelvic floor disorders. In this study, the first biaxial elastic and viscoelastic properties were determined for uterosacral ligament (USL) and cardinal ligament (CL) complexes harvested from adult female swine. Biaxial stress–stretch data revealed that the ligaments undergo large strains. They are orthotropic, being typically stiffer along their main physiological loading direction (i.e., normal to the upper vaginal wall). Biaxial stress relaxation data showed that the ligaments relax equally in both loading directions and more when they are less stretched. In order to describe the experimental findings, a three-dimensional constitutive law based on the Pipkin–Rogers integral series was formulated. The model accounts for incompressibility, large deformations, nonlinear elasticity, orthotropy, and stretch-dependent stress relaxation. This combined theoretical and experimental study provides new knowledge about the mechanical properties of USLs and CLs that could lead to the development of new preventive and treatment methods for pelvic floor disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baek S, Wells PB, Rajagopal KR, Humphrey JD (2005) Heat-induced changes in the finite strain viscoelastic behavior of a collagenous tissue. J Biomech Eng 127(4):580–586

    Article  Google Scholar 

  • Campeau L, Gorbachinsky I, Badlani GH, Andersson KE (2011) Pelvic floor disorders: linking genetic risk factors to biochemical changes. BJU Int 108(8):1240–1247

    Article  Google Scholar 

  • Davis FM, De Vita R (2012) A nonlinear constitutive model for stress relaxation in ligaments and tendons. Ann Biomed Eng 40(12):2541–2550

    Article  Google Scholar 

  • Davis FM, De Vita R (2014) A three-dimensional constitutive model for the stress relaxation of articular ligaments. Biomech Model Mechanobiol 13(3):653–663

    Article  Google Scholar 

  • DeLancey JOL (1992) Anatomic aspects of vaginal eversion after hysterectomy. Am J Obstet Gynecol 166(6):1717–1728

    Article  Google Scholar 

  • Duenwald SE, Vanderby R, Lakes RS (2009) Viscoelastic relaxation and recovery of tendon. Ann Biomed Eng 37(6):1131–1140

    Article  Google Scholar 

  • Duenwald SE, Vanderby R, Lakes RS (2010) Stress relaxation and recovery in tendon and ligament: experiment and modeling. Biorheology 47(1):1–14

    Google Scholar 

  • Findley WN, Lai JS, Onaran K (1976) Creep and relaxation of nonlinear viscoelastic materials. Dover, New York

    MATH  Google Scholar 

  • Fung YC (1993) Biomechanics: mechanical properties of living tissues. Springer, New York

    Book  Google Scholar 

  • Grashow JS, Sacks MS, Liao J, Yoganathan AP (2006) Planar biaxial creep and stress relaxation of the mitral valve anterior leaflet. Ann Biomed Eng 34(10):1509–1518

    Article  Google Scholar 

  • Gruber DD, Warner WB, Lombardini ED, Zahn CM, Buller JL (2011) Anatomical and histological examination of the porcine vagina and supportive structures: in search of an ideal model for pelvic floor disorder evaluation and management. Female Pelvic Med Reconstr Surg 17(3):110–114

    Article  Google Scholar 

  • Harris JL, Humphrey JD, Wells PB (2003) Altered mechanical behavior of epicardium due to isothermal heating under biaxial isotonic loads. J Biomech Eng 125(3):381–388

    Article  Google Scholar 

  • Hingorani RV, Provenzano PP, Lakes RS, Escarcega A, Vanderby R (2004) Nonlinear viscoelasticity in rabbit medial collateral ligament. Ann Biomed Eng 32(2):306–312

    Article  Google Scholar 

  • Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61(1–3):1–48

    Article  MATH  MathSciNet  Google Scholar 

  • Holzapfel GA, Ogden RW (2009) On planar biaxial tests for anisotropic nonlinearly elastic solids. A continuum mechanical framework. Math Mech Solids 14(5):474–489

    Article  MATH  Google Scholar 

  • Humphrey JD, Vawter DL, Vito RP (1987) Quantification of strains in biaxially tested soft tissues. J Biomech 20(1):59–65

    Article  Google Scholar 

  • Humphrey JD (2002) Cardiovascular solid mechanics: cells, tissues, and organs. Springer, Berlin

    Book  Google Scholar 

  • Luo J, Smith TM, Ashton-Miller JA, DeLancey JO (2014) In vivo properties of uterine suspensory tissue in pelvic organ prolapse. J Biomech Eng 136(2):021016

    Article  Google Scholar 

  • Martins P, Silva-Filho AL, Fonseca AMRM, Santos A, Santos L, Mascarenhas T, Jorge RMN, Ferreira AM (2013) Strength of round and uterosacral ligaments: a biomechanical study. Arch Gynecol Obstet 287(2):313–318

    Article  Google Scholar 

  • Miklos JR, Moore RD, Kohli N (2002) Laparoscopic surgery for pelvic support defects. Curr Opin Obstet Gynecol 14(4):387–395

    Article  Google Scholar 

  • Nagatomi J, Toosi KK, Chancellor MB, Sacks MS (2008) Contribution of the extracellular matrix to the viscoelastic behavior of the urinary bladder wall. Biomech Model Mechanobiol 7(5):395–404

    Article  Google Scholar 

  • Nekouzadeh A, Pryse KM, Elson EL, Genin GM (2007) A simplified approach to quasi-linear viscoelastic modeling. J Biomech 40(14):3070–3078

    Article  Google Scholar 

  • Nygaard I, Barber MD, Burgio KL, Kenton K, Meikle S, Schaffer J, Spino C, Whitehead WE, Wu J, Brody DJ (2008) Prevalence of symptomatic pelvic floor disorders in us women. J Am Med Assoc 300(11):1311–1316

    Article  Google Scholar 

  • Olsen AL, Smith VJ, Bergstrom JO, Colling JC, Clark AL (1997) Epidemiology of surgically managed pelvic organ prolapse and urinary incontinence. Obstet Gynecol 89(4):501–506

    Article  Google Scholar 

  • Pipkin AC, Rogers TG (1968) A non-linear integral representation for viscoelastic behaviour. J Mech Phys Solids 16(1):59–72

    Article  MATH  Google Scholar 

  • Provenzano P, Lakes RS, Keenan T, Vanderby R (2001) Nonlinear ligament viscoelasticity. Ann Biomed Eng 29(10):908–914

    Article  Google Scholar 

  • Provenzano P, Lakes RS, Corr DT, Vanderby R (2002) Application of nonlinear viscoelastic models to describe ligament behavior. Biomech Model Mechanobiol 1(1):45–57

    Article  Google Scholar 

  • Pryse KM, Nekouzadeh A, Genin GM, Elson EL, Zahalak G (2003) Incremental mechanics of collagen gels: new experiments and a new viscoelastic model. Ann Biomed Eng 31(10):1287–1296

    Article  Google Scholar 

  • Purslow PP, Wess TJ, Hukins DW (1998) Collagen orientation and molecular spacing during creep and stress-relaxation in soft connective tissues. J Exp Biol 201(1):135–142

    Google Scholar 

  • Rajagopal KR, Wineman AS (2009) Response of anisotropic nonlinearly viscoelastic solids. Math Mech Solids 14(5):490–501

    Article  MATH  MathSciNet  Google Scholar 

  • Ramanah R, Berger MB, Parratte BM, DeLancey JOL (2012) Anatomy and histology of apical support: a literature review concerning cardinal and uterosacral ligaments. Int Urogynecol J 23(11):1483–1494

    Article  Google Scholar 

  • Rubod C, Boukerrou M, Brieu M, Dubois P, Cosson M (2007) Biomechanical properties of vaginal tissue. Part 1: New experimental protocol. J Urol 178(1):320–325

    Article  Google Scholar 

  • Sacks MS (2000) Biaxial mechanical evaluation of planar biological materials. J Elast 61(1–3):199–246

    Article  MATH  Google Scholar 

  • Salman MC, Ozyuncu O, Sargon MF, Kucukali T, Durukan T (2010) Light and electron microscopic evaluation of cardinal ligaments in women with or without uterine prolapse. Int Urogynecol J 21(2):235–239

    Article  Google Scholar 

  • Schapery RA (1969) On the characterization of nonlinear viscoelastic materials. Polym Eng Sci 9(4):295–310

    Article  Google Scholar 

  • Shahryarinejad A, Gardner TR, Cline JM, Levine WN, Bunting HA, Brodman MD, Ascher-Walsh CJ, Scotti RJ, Vardy MD (2010) Effect of hormone replacement and selective estrogen receptor modulators (serms) on the biomechanics and biochemistry of pelvic support ligaments in the cynomolgus monkey (Macaca fascicularis). Am J Obstet Gynecol 202(5):485-e1

    Article  Google Scholar 

  • van Dommelen JAW, Jolandan MM, Ivarsson BJ, Millington SA, Raut M, Kerrigan JR, Crandall JR, Diduch DR (2006) Nonlinear viscoelastic behavior of human knee ligaments subjected to complex loading histories. Ann Biomed Eng 34(6):1008–1018

    Article  Google Scholar 

  • Vardy MD, Gardner TR, Cosman F, Scotti RJ, Mikhail MS, Preiss-Bloom AO, Williams JK, Cline JM, Lindsay R (2005) The effects of hormone replacement on the biomechanical properties of the uterosacral and round ligaments in the monkey model. Am J Obstet Gynecol 192(5):1741–1751

  • Wells PB, Thomsen S, Jones MA, Baek S, Humphrey JD (2005) Histological evidence for the role of mechanical stress in modulating thermal denaturation of collagen. Biomech Model Mechanobiol 4(4):201–210

    Article  Google Scholar 

  • Wu JM, Hundley AF, Fulton RG, Myers ER (2009) Forecasting the prevalence of pelvic floor disorders in US women: 2010 to 2050. Obstet Gynecol 114(6):1278–1283

    Article  Google Scholar 

  • Zou Y, Zhang Y (2011) The orthotropic viscoelastic behavior of aortic elastin. Biomech Model Mechanobiol 10(5):613–625

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Funding was provided by NSF CAREER Grant No. 1150397. Winston Becker was supported by the NSF Graduate Research Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaella De Vita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becker, W.R., De Vita, R. Biaxial mechanical properties of swine uterosacral and cardinal ligaments. Biomech Model Mechanobiol 14, 549–560 (2015). https://doi.org/10.1007/s10237-014-0621-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-014-0621-5

Keywords

Navigation