Skip to main content

Advertisement

Log in

Minimally Invasive Intracerebral Hemorrhage Evacuation: A review

  • Review
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Intracerebral hemorrhage is a leading cause of morbidity and mortality worldwide. To date, there is no specific treatment that clearly provides a benefit in functional outcome or mortality. Surgical treatment for hematoma evacuation has not yet shown clear benefit over medical management despite promising preclinical studies. Minimally invasive treatment options for hematoma evacuation are under investigation but remain in early-stage clinical trials. Robotics has the potential to improve treatment. In this paper, we review intracerebral hemorrhage pathology, currently available treatments, and potential robotic approaches to date. We also discuss the future role of robotics in stroke treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. A highly compact fiberoptic rotation sensor for a neurosurgical robot. 2018 International Symposium on Medical Robotics (ISMR); 2018 1–3 March 2018.

  2. A skull-mounted robotic headframe for a neurosurgical robot. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2017 24–28 Sept. 2017.

  3. A telerobotic system for augmentation of endoscopic surgery. 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 1992 29 Oct.–1 Nov. 1992.

  4. Abergel, E. The future of stroke interventions. Rambam Maimonides Med. J. 2020. https://doi.org/10.5041/rmmj.10404

    Article  PubMed  PubMed Central  Google Scholar 

  5. Alan, N., V. Kokkinos, A. Faraji, et al. E-111 Efficacy and safety of robotic stereotactic assistance (rosa) device for minimally invasive placement of intraparenchymal hematoma and intraventricular catheters: case series. J. NeuroInterv. Surg. 11(Suppl 1):A109–A209, 2019. https://doi.org/10.1136/neurintsurg-2019-SNIS.186

    Article  Google Scholar 

  6. Alan, N., P. Lee, A. Ozpinar, et al. Robotic stereotactic assistance (ROSA) utilization for minimally invasive placement of intraparenchymal hematoma and intraventricular catheters. World Neurosurg. 108:996.e7–96.e10, 2017. https://doi.org/10.1016/j.wneu.2017.09.027

    Article  Google Scholar 

  7. Al-Kawaz, M. N., D. F. Hanley, and W. Ziai. Advances in therapeutic approaches for spontaneous intracerebral hemorrhage. Neurotherapeutics. 2020. https://doi.org/10.1007/s13311-020-00902-w

    Article  PubMed  PubMed Central  Google Scholar 

  8. Artemis ™ Neuro Evacuation Device https://www.penumbrainc.com/neuro-device/artemis-neuro-evacuation-device/.

  9. Awad, I. A., S. P. Polster, J. Carrión-Penagos, et al. Surgical performance determines functional outcome benefit in the minimally invasive surgery plus recombinant tissue plasminogen activator for intracerebral hemorrhage evacuation (MISTIE) procedure. Neurosurgery. 84(6):1157–1168, 2019. https://doi.org/10.1093/neuros/nyz077

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bartek, J., A. Alattar, M. Jensdottir, et al. Biopsy and ablation of H3K27 glioma using skull-mounted smartframe device: technical case report. World Neurosurg. 127:436–441, 2019. https://doi.org/10.1016/j.wneu.2019.04.029

    Article  PubMed  Google Scholar 

  11. Bergeles, C., A. H. Gosline, N. V. Vasilyev, et al. Concentric tube robot design and optimization based on task and anatomical constraints. IEEE Trans. Robot. 31(1):67–84, 2015. https://doi.org/10.1109/TRO.2014.2378431

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bhatia, K., M. Hepburn, E. Ziu, et al. Modern approaches to evacuating intracerebral hemorrhage. Curr. Cardiol. Rep. 20(12):132, 2018. https://doi.org/10.1007/s11886-018-1078-4

    Article  PubMed  Google Scholar 

  13. Blinc, A., C. W. Francis, J. L. Trudnowski, et al. Characterization of ultrasound-potentiated fibrinolysis in vitro. Blood. 81(10):2636–2643, 1993

    Article  CAS  Google Scholar 

  14. BrainPath® Endoport System https://niconeuro.com/our-integrated-system/.

  15. Burgner, J., P. J. Swaney, R. A. Lathrop, et al. Debulking from within: a robotic steerable cannula for intracerebral hemorrhage evacuation. IEEE Trans. Biomed. Eng. 60(9):2567–2575, 2013. https://doi.org/10.1109/tbme.2013.2260860

    Article  PubMed  Google Scholar 

  16. Carhuapoma, J. R., R. J. Barrett, P. M. Keyl, et al. Stereotactic aspiration-thrombolysis of intracerebral hemorrhage and its impact on perihematoma brain edema. Neurocritical Care. 8(3):322–329, 2008. https://doi.org/10.1007/s12028-008-9074-y

    Article  PubMed  PubMed Central  Google Scholar 

  17. Carhuapoma, J. R., S. A. Mayer, and D. F. Hanley. Intracerebral Hemorrhage. Cambridge: Cambridge University Press, 2009

    Book  Google Scholar 

  18. Chen, Y., I. S. Godage, S. Sengupta, et al. MR-conditional steerable needle robot for intracerebral hemorrhage removal. Int. J. Comput. Assist. Radiol. Surg. 14(1):105–115, 2019. https://doi.org/10.1007/s11548-018-1854-z[publishedOnlineFirst:2018/09/03]

    Article  PubMed  Google Scholar 

  19. Chen, Y., I. Godage, H. Su, et al. Stereotactic systems for MRI-guided neurosurgeries: a state-of-the-art review. Ann. Biomed. Eng. 47(2):335–353, 2019. https://doi.org/10.1007/s10439-018-02158-0

    Article  PubMed  Google Scholar 

  20. Chen, Y., I. S. Godage, Z. T. H. Tse, et al. Characterization and control of a pneumatic motor for MR-conditional robotic applications. IEEE ASME Trans. Mechatron. 22(6):2780–2789, 2017. https://doi.org/10.1109/tmech.2017.2767906

    Article  PubMed  PubMed Central  Google Scholar 

  21. ClearPoint® System https://www.clearpointneuro.com/products/clearpoint/clearpoint-overview.

  22. Control and evaluation of a 7-axis surgical robot for laparoscopy. Proceedings of 1995 IEEE International Conference on Robotics and Automation; 1995 21-27 May 1995.

  23. de Oliveira Manoel, A. L. Surgery for spontaneous intracerebral hemorrhage. Crit. Care (London, England). 24(1):45, 2020. https://doi.org/10.1186/s13054-020-2749-2

    Article  Google Scholar 

  24. DENSO Industrial Robots VS-068/087 https://www.denso-wave.com/en/robot/product/five-six/vs068-087.html.

  25. Desai, V. R., J. J. Lee, T. Sample, et al. First in man pilot feasibility study in extracranial carotid robotic-assisted endovascular intervention. Neurosurgery. 88(3):506–514, 2021. https://doi.org/10.1093/neuros/nyaa461

    Article  PubMed  Google Scholar 

  26. Desai, J. P., J. Sheng, S. S. Cheng, et al. Toward patient-specific 3D-printed robotic systems for surgical interventions. IEEE Trans. Med. Robot. Bionics. 1(2):77–87, 2019. https://doi.org/10.1109/TMRB.2019.2912444

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ding, D., C. J. Przybylowski, R. M. Starke, et al. A minimally invasive anterior skull base approach for evacuation of a basal ganglia hemorrhage. J. Clin. Neurosci. 22(11):1816–1819, 2015. https://doi.org/10.1016/j.jocn.2015.03.052

    Article  PubMed  Google Scholar 

  28. Eldridge, B., K. Gruben, D. LaRose, et al. A remote center of motion robotic arm for computer assisted surgery. Robotica. 14(1):103–109, 1996. https://doi.org/10.1017/S0263574700018981

    Article  Google Scholar 

  29. Fiorella, D., A. Arthur, M. Bain, et al. Minimally invasive surgery for intracerebral and intraventricular hemorrhage: rationale, review of existing data and emerging technologies. Stroke. 47(5):1399–1406, 2016. https://doi.org/10.1161/strokeaha.115.011415

    Article  PubMed  Google Scholar 

  30. Fiorella, D., A. S. Arthur, and J. D. Mocco. 305; The INVEST trial: a randomized, controlled trial to investigate the safety and efficacy of image-guided minimally invasive endoscopic surgery with apollo vs. best medical management for supratentorial intracerebral hemorrhage. Neurosurgery. 63:187, 2016. https://doi.org/10.1227/01.neu.0000489793.60158.20

    Article  Google Scholar 

  31. Funda J, R. H. Taylor, B. Eldridge, et al. Constrained Cartesian motion control for teleoperated surgical robots. IEEE Trans. Robot. Autom. 12(3):453–465, 1996. https://doi.org/10.1109/70.499826

    Article  Google Scholar 

  32. Galloway, R. L. Chapter 1 - Introduction and Historical Perspectives on Image-Guided Surgery. In: Image-Guided Neurosurgery, edited by A. J. Golby. Boston: Academic Press, 2015, pp. 1–22

    Google Scholar 

  33. Godage, I.S., A. A. Remirez, R. Wirz, K. D. Weaver, J. Burgner-Kahrs, and R. J. Webster. Robotic intracerebral hemorrhage evacuation: an in-scanner approach with concentric tube robots. IEEE RSJ International Conference on Intellligent Robots and Systems (IROS). Hamburg, Germany: IEEE, 2015:1447–1452.

  34. Gonzalez-Martinez, J., S. Vadera, J. Mullin, et al. Robot-assisted stereotactic laser ablation in medically intractable epilepsy: operative technique. Operat. Neurosurg. 10(2):167–173, 2014. https://doi.org/10.1227/NEU.0000000000000286

    Article  Google Scholar 

  35. Goyal, N., G. Tsivgoulis, K. Malhotra, et al. Minimally invasive endoscopic hematoma evacuation vs best medical management for spontaneous basal-ganglia intracerebral hemorrhage. J. Neurointerv. Surg. 11(6):579–583, 2019. https://doi.org/10.1136/neurintsurg-2018-014447

    Article  PubMed  Google Scholar 

  36. Gross, B. A., B. T. Jankowitz, and R. M. Friedlander. Cerebral intraparenchymal hemorrhage: a review. JAMA. 321(13):1295–1303, 2019. https://doi.org/10.1001/jama.2019.2413

    Article  PubMed  Google Scholar 

  37. Han, S. J., K. Bankiewicz, N. A. Butowski, et al. Interventional MRI-guided catheter placement and real time drug delivery to the central nervous system. Expert Rev. Neurotherap. 16(6):635–639, 2016. https://doi.org/10.1080/14737175.2016.1175939

    Article  CAS  Google Scholar 

  38. Hanley, D. F., R. E. Thompson, J. Muschelli, et al. Safety and efficacy of minimally invasive surgery plus alteplase in intracerebral haemorrhage evacuation (MISTIE): a randomised, controlled, open-label, phase 2 trial. Lancet Neurol. 15(12):1228–1237, 2016. https://doi.org/10.1016/S1474-4422(16)30234-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hanley, D. F., R. E. Thompson, M. Rosenblum, et al. Efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): a randomised, controlled, open-label, blinded endpoint phase 3 trial. Lancet. 393(10175):1021–1032, 2019. https://doi.org/10.1016/S0140-6736(19)30195-3

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hannah, T. C., R. Kellner, and C. P. Kellner. Minimally invasive intracerebral hemorrhage evacuation techniques: a review. Diagnostics. 2021. https://doi.org/10.3390/diagnostics11030576

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hersh, E., Y. Gologorsky, A. G. Chartrain, et al. Minimally invasive therapy for intracerebral hematomas. Neurosurg. Clin. N. Am. 2018(18):349–354, 1834. https://doi.org/10.1007/s11910-018-0836-4

    Article  CAS  Google Scholar 

  42. Hersh, E. H., Y. Gologorsky, A. G. Chartrain, et al. Minimally invasive surgery for intracerebral hemorrhage. Curr. Neurol. Neurosci. Rep. 18(6):34, 2018. https://doi.org/10.1007/s11910-018-0836-4

    Article  CAS  PubMed  Google Scholar 

  43. Housepian, E. M., and J. L. Pool. The accuracy of human stereoencephalotomy as judged by histological confirmation of roentgenographic localization. J. Nerv. Ment. Dis. 130:520–525, 1960. https://doi.org/10.1097/00005053-196006000-00011

    Article  CAS  PubMed  Google Scholar 

  44. JanVargas, A. M. S., and R. D. Turner. Intracerebral Hemorrhage Therapeutics Concepts and Customs. Switzerland: Springer International Publishing AG, 2018

    Google Scholar 

  45. Jessica Burgner PJS, Ray A. Lathrop, Kyle D. Weaver, Robert J. Webster III. Robot- Assisted Intracerebral Hemorrhage Evacuation: An Experimental Evaluation. The International Society for Optics and Photonics: SPIE Proc., 2013.

  46. Jun Sheng, J. P. D. Towards a SMA-actuated Neurosurgical Intracerebral Hemorrhage Evacuation (NICHE) robot. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany: IEEE, 2015:3805–3810.

  47. Kellner, C. P., A. G. Chartrain, D. A. Nistal, et al. The Stereotactic Intracerebral Hemorrhage Underwater Blood Aspiration (SCUBA) technique for minimally invasive endoscopic intracerebral hemorrhage evacuation. J. Neurointerv. Surg. 10(8):771–776, 2018. https://doi.org/10.1136/neurintsurg-2017-013719

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kellner, C. P., R. Song, J. Pan, et al. Long-term functional outcome following minimally invasive endoscopic intracerebral hemorrhage evacuation. J. Neurointerv. Surg. 12(5):489–494, 2020. https://doi.org/10.1136/neurintsurg-2019-015528

    Article  PubMed  PubMed Central  Google Scholar 

  49. Labib, M. A., M. Shah, A. B. Kassam, et al. The safety and feasibility of image-guided brainpath-mediated transsulcul hematoma evacuation: a multicenter study. Neurosurgery. 80(4):515–524, 2017. https://doi.org/10.1227/neu.0000000000001316

    Article  PubMed  Google Scholar 

  50. Larson, P. S., P. A. Starr, G. Bates, et al. An optimized system for interventional magnetic resonance imaging-guided stereotactic surgery: preliminary evaluation of targeting accuracy. Neurosurgery. 70:95–103, 2012. https://doi.org/10.1227/NEU.0b013e31822f4a91

    Article  PubMed  Google Scholar 

  51. Lefranc, M., C. Capel, A. S. Pruvot-Occean, et al. Frameless robotic stereotactic biopsies: a consecutive series of 100 cases. J. Neurosurg. 122(2):342–352, 2015. https://doi.org/10.3171/2014.9.jns14107

    Article  PubMed  Google Scholar 

  52. Li, C., N. K. K. King, and H. Ren. A skull-mounted robot with a compact and lightweight parallel mechanism for positioning in minimally invasive neurosurgery. Ann. Biomed. Eng. 46(10):1465–1478, 2018. https://doi.org/10.1007/s10439-018-2037-3

    Article  PubMed  Google Scholar 

  53. Mahmud, E., J. Naghi, L. Ang, et al. Demonstration of the safety and feasibility of robotically assisted percutaneous coronary intervention in complex coronary lesions: results of the CORA-PCI study (complex robotically assisted percutaneous coronary intervention). JACC Cardiovasc. Interv. 10(13):1320–1327, 2017. https://doi.org/10.1016/j.jcin.2017.03.050

    Article  PubMed  Google Scholar 

  54. Meng, F., F. Zhai, B. Zeng, et al. An automatic markerless registration method for neurosurgical robotics based on an optical camera. Int. J. Comput. Assist. Radiol. Surg. 13(2):253–265, 2018. https://doi.org/10.1007/s11548-017-1675-5

    Article  PubMed  Google Scholar 

  55. Monfaredi, R., K. Cleary, and K. Sharma. MRI robots for needle-based interventions: systems and technology. Ann. Biomed. Eng. 46(10):1479–1497, 2018. https://doi.org/10.1007/s10439-018-2075-x

    Article  PubMed  PubMed Central  Google Scholar 

  56. Nelson, J. T., and N. C. Bambakidis. The delivery of stroke intervention in the community: is telerobotic endovascular surgery the solution? J. Neurosurg. 132(3):968–970, 2019. https://doi.org/10.3171/2019.10.Jns192195

    Article  PubMed  Google Scholar 

  57. Ostrem, J. L., N. Ziman, N. B. Galifianakis, et al. Clinical outcomes using ClearPoint interventional MRI for deep brain stimulation lead placement in Parkinson’s disease. J. Neurosurg. JNS. 124(4):908–916, 2016. https://doi.org/10.3171/2015.4.JNS15173

    Article  Google Scholar 

  58. Panesar, S. S., J. J. Volpi, A. Lumsden, et al. Telerobotic stroke intervention: a novel solution to the care dissemination dilemma. J. Neurosurg. 132(3):971–978, 2019. https://doi.org/10.3171/2019.8.Jns191739

    Article  PubMed  Google Scholar 

  59. Patel, T. M., S. C. Shah, and S. B. Pancholy. Long distance tele-robotic-assisted percutaneous coronary intervention: a report of first-in-human experience. EClinicalMedicine. 14:53–58, 2019. https://doi.org/10.1016/j.eclinm.2019.07.017

    Article  PubMed  PubMed Central  Google Scholar 

  60. Przybylowski, C. J., D. Ding, R. M. Starke, et al. Endoport-assisted surgery for the management of spontaneous intracerebral hemorrhage. J. Clin. Neurosci. 22(11):1727–1732, 2015. https://doi.org/10.1016/j.jocn.2015.05.015

    Article  PubMed  Google Scholar 

  61. Pucci, J. U., S. H. Mehta, B. R. Christophe, et al. Principles and Techniques of Surgical Management of ICH. In: Stroke Revisited: Hemorrhagic Stroke, edited by S.-H. Lee, et al., . Singapore: Springer, 2018, pp. 159–166

    Chapter  Google Scholar 

  62. Rebound Therapeutics Announces FDA Clearance of the Aurora Surgiscope System for Minimally Invasive Neurosurgery. BioSpace.

  63. Remebot. Remebot ® Neurosurgical Robot https://en.remebot.com.cn/index.php/site/product.

  64. Robot-assisted minimally invasive neurosurgical procedures: First experimental experience. 1st International Joint Conference on Computer Vision, Virtual Reality, and Robotics in Medicine and Medical Robotics and Computer Assisted Surgery, CVRMed-MRCAS 1997; 1997 1997/01/01/. Springer Verlag.

  65. ROSA® Surgical Robot: Brain https://www.medtech.fr/en/rosa-brain.

  66. Shin, S., H. Cho, S. Yoon, et al. Markerless surgical robotic system for intracerebral hemorrhage surgery. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2015:5272–5275, 2015. https://doi.org/10.1109/embc.2015.7319581

    Article  PubMed  Google Scholar 

  67. Shin, S., D. Lee, Y. Kim, et al. Markerless registration for intracerebral hemorrhage surgical system using weighted Iterative Closest Point (ICP). Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2012:5306–5309, 2012. https://doi.org/10.1109/embc.2012.6347192

    Article  PubMed  Google Scholar 

  68. Sondag, L., F. H. B. M. Schreuder, H. D. Boogaarts, et al. Neurosurgical intervention for supratentorial intracerebral hemorrhage. Ann. Neurol. 88(2):239–250, 2020. https://doi.org/10.1002/ana.25732

    Article  PubMed  PubMed Central  Google Scholar 

  69. Standard A. F2503. Standard practice for marking medical devices and other items for safety in the magnetic resonance environment: ASTM International, West Conshohocken, PA, 2013.

  70. Teernstra, O. P., S. M. Evers, J. Lodder, et al. Stereotactic treatment of intracerebral hematoma by means of a plasminogen activator: a multicenter randomized controlled trial (SICHPA). Stroke. 34(4):968–974, 2003. https://doi.org/10.1161/01.str.0000063367.52044.40

    Article  CAS  PubMed  Google Scholar 

  71. Towards a MRI-compatible meso-scale SMA-actuated robot using PWM control. 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics; 2010 26-29 Sept. 2010.

  72. Troiani, Z., L. C. Ascanio, K. A. Yaeger, et al. Minimally invasive surgiscopic evacuation of intracerebral hemorrhage. J. Neurointerv. Surg. 2020. https://doi.org/10.1136/neurintsurg-2020-016553

    Article  PubMed  Google Scholar 

  73. Troiani, Z., L. Ascanio-Cortez, K. Yaeger, et al. 1133 Initial experience with a novel minimally invasive intracerebral hemorrhage evacuation system, 2020.

  74. Vespa, P., D. Hanley, J. Betz, et al. ICES (intraoperative stereotactic computed tomography-guided endoscopic surgery) for brain hemorrhage. Stroke. 47(11):2749–2755, 2016. https://doi.org/10.1161/STROKEAHA.116.013837

    Article  PubMed  PubMed Central  Google Scholar 

  75. Vitt, J. R., C. H. Sun, P. D. Le Roux, et al. Minimally invasive surgery for intracerebral hemorrhage. Curr. Opin. Crit. Care. 26(2):129–136, 2020. https://doi.org/10.1097/mcc.0000000000000695

    Article  PubMed  Google Scholar 

  76. Vuong, S. M., C. P. Carroll, R. D. Tackla, et al. Application of emerging technologies to improve access to ischemic stroke care. Neurosurg. Focus. 42(4):E8, 2017. https://doi.org/10.3171/2017.1.Focus16520

    Article  PubMed  Google Scholar 

  77. Wang, W. Z., B. Jiang, H. M. Liu, et al. Minimally invasive craniopuncture therapy vs conservative treatment for spontaneous intracerebral hemorrhage: results from a randomized clinical trial in China. Int. J. Stroke. 4(1):11–16, 2009. https://doi.org/10.1111/j.1747-4949.2009.00239.x

    Article  PubMed  Google Scholar 

  78. Wang, Y., H. Jin, S. Gong, et al. Efficacy analysis of robot-assisted minimally invasive surgery for small-volume spontaneous thalamic hemorrhage. World Neurosurg. 131:e543–e549, 2019. https://doi.org/10.1016/j.wneu.2019.07.224

    Article  PubMed  Google Scholar 

  79. Wang, T., Q. J. Zhao, J. W. Gu, et al. Neurosurgery medical robot Remebot for the treatment of 17 patients with hypertensive intracerebral hemorrhage. Int. J. Med. Robot.15(5):e2024, 2019. https://doi.org/10.1002/rcs.2024

    Article  PubMed  Google Scholar 

  80. Weisz, G., D. C. Metzger, R. P. Caputo, et al. Safety and feasibility of robotic percutaneous coronary intervention: PRECISE (Percutaneous Robotically-Enhanced Coronary Intervention) Study. J. Am. Coll. Cardiol. 61(15):1596–1600, 2013. https://doi.org/10.1016/j.jacc.2012.12.045

    Article  PubMed  Google Scholar 

  81. Wu, Z., Q. Zhao, Z. Tian, et al. Efficacy and safety of a new robot-assisted stereotactic system for radiofrequency thermocoagulation in patients with temporal lobe epilepsy. Exp. Therap. Med. 7(6):1728–1732, 2014. https://doi.org/10.3892/etm.2014.1620

    Article  Google Scholar 

  82. Xia, L., Q. Han, X. Y. Ni, et al. Different techniques of minimally invasive craniopuncture for the treatment of hypertensive intracerebral hemorrhage. World Neurosurg. 126:e888–e894, 2019. https://doi.org/10.1016/j.wneu.2019.03.006

    Article  PubMed  Google Scholar 

  83. Xiao, X., H. Gao, C. Li, et al. Portable body-attached positioning mechanism toward robotic needle intervention. IEEE/ASME Trans. Mechatronics. 25(2):1105–1116, 2020. https://doi.org/10.1109/TMECH.2020.2974760

    Article  Google Scholar 

  84. Xiao, Q., R. Monfaredi, M. Musa, et al. MR-conditional actuations: a review. Ann. Biomed. Eng. 48(12):2707–2733, 2020. https://doi.org/10.1007/s10439-020-02597-8

    Article  PubMed  Google Scholar 

  85. Xiong, R., F. Li, and X. Chen. Robot-assisted neurosurgery versus conventional treatment for intracerebral hemorrhage: a systematic review and meta-analysis. J. Clin. Neurosci. 82(Pt B):252–259, 2020. https://doi.org/10.1016/j.jocn.2020.10.045

    Article  PubMed  Google Scholar 

  86. Yifanzhu, P. J. S., I. S. Godage, R. A. Lathrop, and R. J. Webster. A disposable robot for intracerebral hemorrhage removal. J. Med. Devices. 10(2):020952, 2016. https://doi.org/10.1115/1.4033246

    Article  Google Scholar 

  87. Yoon, S., S. Shin, H. Cho, et al. Enhanced markerless surgical robotic guidance system for keyhole neurosurgery. J. Adv. Mech. Design Syst. Manuf. 11(4):046–46, 2017. https://doi.org/10.1299/jamdsm.2017jamdsm0046

    Article  Google Scholar 

  88. Zhang, Y.-S., G. Cheng, L. Fan, et al. Application of frameless stereotactic aspiration in the treatment of hypertension cerebral hemorrhage. Med. J. Chin. People’s Liberation Army. 41(8):673–676, 2016

    Google Scholar 

Download references

Author Contributions

All authors contributed to the design, analysis, writing, and revising of this manuscript. All authors approved submitted version.

Funding

This work was partially supported by the National Institutes of Health (NIH) under Grant No. R01NS116148.

Conflict of interest

Christopher Kellner: Icahn School of Medicine at Mount Sinai receives research grant support for work initiated or managed by Dr. Christopher Kellner from Penumbra, Integra, Minnetronix, Nico, Viz.AI, Siemens, Cerebrotech, Irras, ICE Neurosystems, and Longevity for work related to the surgical management of intracerebral hemorrhage. Other authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Chen.

Additional information

Associate Editor Xiaoxiang Zheng oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musa, M.J., Carpenter, A.B., Kellner, C. et al. Minimally Invasive Intracerebral Hemorrhage Evacuation: A review. Ann Biomed Eng 50, 365–386 (2022). https://doi.org/10.1007/s10439-022-02934-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-02934-z

Keywords

Navigation