Skip to main content
Log in

MRI Robots for Needle-Based Interventions: Systems and Technology

  • Medical Robotics
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) provides high-quality soft-tissue images of anatomical structures and radiation free imaging. The research community has focused on establishing new workflows, developing new technology, and creating robotic devices to change an MRI room from a solely diagnostic room to an interventional suite, where diagnosis and intervention can both be done in the same room. Closed bore MRI scanners provide limited access for interventional procedures using intraoperative imaging. MRI robots could improve access and procedure accuracy. Different research groups have focused on different technology aspects and anatomical structures. This paper presents the results of a systematic search of MRI robots for needle-based interventions. We report the most recent advances in the field, present relevant technologies, and discuss possible future advances. This survey shows that robotic-assisted MRI-guided prostate biopsy has received the most interest from the research community to date. Multiple successful clinical experiments have been reported in recent years that show great promise. However, in general the field of MRI robotic systems is still in the early stage. The continued development of these systems, along with partnerships with commercial vendors to bring this technology to market, is encouraged to create new and improved treatment opportunities for future patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Ahmed, H. U., A. El-Shater Bosaily, L. C. Brown, R. Gabe, R. Kaplan, M. K. Parmar, Y. Collaco-Moraes, K. Ward, R. G. Hindley, A. Freeman, A. P. Kirkham, R. Oldroyd, C. Parker, and M. Emberton. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389:815–822, 2017.

    Article  PubMed  Google Scholar 

  2. ASTM F2503-13. Standard Practice for Marking Medical Devices and Other Items for Safety in the Magnetic Resonance Environment.

  3. Ball, M. W., A. E. Ross, K. Ghabili, C. Kim, C. Jun, D. Petrisor, L. Pan, J. I. Epstein, K. J. Macura, D. S. Stoianovici, and M. E. Allaf. Safety and feasibility of direct magnetic resonance imaging-guided transperineal prostate biopsy using a novel magnetic resonance imagingsafe robotic device. J. Urol. 109:216–221, 2017.

    Article  Google Scholar 

  4. Bosch, M. R., M. R. Moman, M. Vulpen, J. J. Battermann, E. Duiveman, L. J. Schelven, H. Leeuw, J. J. Lagendijk, and M. A. Moerland. MRI-guided robotic system for transperineal prostate interventions: proof of principle. Phys. Med. Biol. 55:N133–N140, 2010.

    Article  PubMed  Google Scholar 

  5. Boström, Peter, Sean R. H. Davidson, Uri Lindner, Orit Raz, Alexandra Colquhoun, Eugen Hlasny, Masoom A. Haider, Stuart Mccluskey, Marshall Sussman, Yang Yi, Mark Gertner, and Walter Kucharczyk. First clinical experience with robotic Mr-guided focal laser ablation of prostate cancer. J. Urol. 185:e520–e521, 2011.

    Article  Google Scholar 

  6. Center for Disease Control and Prevention. [Online]. https://www.cdc.gov/cancer/dcpc/data/men.htm.

  7. Chan, K. G., T. Fielding, and M. Anvari. An image-guided automated robot for MRI breast biopsy. Int. J. Med. Robot. 12(3):461–477, 2016.

    Article  PubMed  Google Scholar 

  8. Chang, S. D., W. Main, D. P. Martin, I. C. Gibbs, and M. P. Heilbrun. An analysis of the accuracy of the CyberKnife: a robotic frameless stereotactic radiosurgical system. J. Neurosurg. 52(1):140–146, 2003.

    Google Scholar 

  9. Chen, L., T. Paetz, V. Dicken, S. Krass, J. Al Issawi, D. Ojdanić, S. Krass, G. Tigelaar, J. Sabisch, A. V. Poelgeest, and J. Schaechtele. Design of a dedicated five degreeof-freedom magnetic resonance imaging compatible robot for image guided prostate biopsy. J. Med. Devices 9(1):015002, 2015.

    Article  Google Scholar 

  10. Chen, Y., M. E. Poorman, D. B. Comber, E. B. Pitt, C. Liu, I. S. Godage, H. Yu, W. A. Grissom, E. J. Barth, and R. J. Webster. Treating epilepsy via thermal ablation: initial experiments with an MRI-guided concentric tube robot. J. Nat. 35:1–2, 2017.

    CAS  Google Scholar 

  11. Chen, Y., S. Xu, A. Squires, R. Seifabadi, I. B. Turkbey, P. Pinto, P. Choyke, B. Wood, and Z. T. H. Tse. MRI guided robotically assisted focal laser ablation of the prostate using canine cadavers. IEEE Trans. Biomed. Eng. 2017. https://doi.org/10.1109/TBME.2017.2756907.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen, K., J. Yuen, H. Ho, C. Cheng, K. Lau, l Lee, Y. Tan, Y. Law, and K. Tay. Robot-assisted transperineal MRI-ultrasound (MRI-US) fusion targeted biopsy is more efficacious in detecting clinically significant prostate cancer than systematic random saturation biopsy. Int. J. Urol. 23:64–65, 2016.

    Google Scholar 

  13. Chinzei, K., N. Hata, F. A. Jolesz, and R. Kikinis. MR compatible surgical assist robot: system integration and preliminary feasibility study. Medical Image Computing and Computer-Assisted Intervention. In: MICCAI, pp. 921–930, 2000.

  14. Cleary, K. and A Kinsella. The Operating Room of the Future. Department of Radiology, Georgetown University, Washington DC, Workshop Report http://www.dtic.mil/dtic/tr/fulltext/u2/a430482.pdf.

  15. Cleary, K., S. Lim, C. Jun, R. Monfaredi, K. Sharma, S. T. Fricke, L. Vargas, D. Petrisor, and D. Stoianovici. Robotically assisted long bone biopsy under MRI imaging: workflow and preclinical study. Acad. Radiol. 25(1):74–81, 2018.

    Article  PubMed  Google Scholar 

  16. Comber, D. B., E. J. Barth, and R. J. Webster. Design and control of an magnetic resonance compatible precision pneumatic active cannula robot. J. Med. Devices 8:011003, 2014.

    Article  Google Scholar 

  17. Comber, D., E. B. Pitt, H. B. Gilbert, M. W. Powelson, E. Matijevich, J. S. Neimat, R. J. Webster, and E. J. Barth. Optimization of curvilinear needle trajectories for transforamenal hippocampotomy. Oper. Neurosurg. 13(1):15–22, 2016.

    Google Scholar 

  18. Eslami, S., G. S. Fischer, S. E. Song, J. Tokuda, N. Hata, C. M. Tempany, and I Iordachita. Towards clinically optimized MRI-guided surgical manipulator for minimally invasive prostate percutaneous interventions: constructive design. In: IEEE International Conference on Robotics and Automation. pp. 1228–1233, 2013.

  19. Eslami, S., W. Shang, G. Li, N. Patel, G. S. Fischer, J. Tokuda, N. Hata, C. M. Tempany, and I. Iordachita. In-bore prostate transperineal interventions with an mri-guided parallel manipulator: system development and preliminary evaluation. Int. J. Med. Robot. 12(2):199–213, 2016.

    Article  PubMed  Google Scholar 

  20. Ferlay, J., I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, D. M. Parkin, D. Forman, and F. Bray. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136(5):E359–E386, 2015.

    Article  CAS  PubMed  Google Scholar 

  21. Fischer, G. S., G. Cole, and H. Su. Approaches to Creating and Controlling Motion in MRI. In: Conference of the IEEE Engineering in Medicine and Biology Society. Boston, pp. 6687–6690, 2011.

  22. Fischer, G. S., G. Cole, and H. Su. Approaches to creating and controlling motion in MRI. In: IEEE Engineering in Medicine and Biology Conference. pp. 6687–6690, 2011.

  23. Fischer, G. S., A. Krieger, I. Iordachita, C. Csoma, L. L. Whitcomb, and G. Fichtinger. MRI compatibility of robot actuation techniques: a comparative study. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 509–517, 2008.

  24. Franco, E., D. Brujic, M. Rea, W. M. Gedroyc, and M. Ristic. Needle-guiding robot for laser ablation of liver tumors under MRI guidance. IEEE/ASME Trans. Mechatron. 21(2):931–944, 2016.

    Article  Google Scholar 

  25. Franco, E., M. Ristic, M. Rea, and W. M. Gedroyc. Robot-assistant for MRI-guided liver ablation: a pilot study. Med. Phys. 43(10):5347–5356, 2016.

    Article  PubMed  Google Scholar 

  26. Fry, F. J. Intense focused ultrasound in medicine. Eur. Urol. 23(1):2–7, 1993.

    Article  PubMed  Google Scholar 

  27. Gassert, R., R. Moser, E. Burdet, and H. Bleuler. Mri/fmri-compatible robotic system with force feedback for interaction with human motion. IEEE Trans. Mech. 11:216–224, 2006.

    Article  Google Scholar 

  28. Gassert, R., A. Yamamoto, D. Chapuis, L. Dovat, H. Bleuler, and E. Burdet. Actuation methods for applications in MR environments. Concepts Magn. Reson. Part B 29B(4):191–209, 2006.

    Article  Google Scholar 

  29. Gering, D. T., A. Nabavi, R. Kikinis, N. Hata, L. J. O’Donnell, W. E. Grimson, F. A. Jolesz, P. M. Black, and W. M. Wells. “An integrated visualization system for surgical planning and guidance using image fusion and an open MR. J. Magn. Reson. Imaging 13:967–975, 2001.

    Article  CAS  PubMed  Google Scholar 

  30. Giannarini, G., M. Zazzara, M. Rossanese, V. Palumbo, M. Pancot, G. Como, M. Abbinante, and V. Ficarra. Will multi-parametric magnetic resonance imaging be the future tool to detect clinically significant prostate cancer? Front. Oncol. 4:294, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Groenhuis, V., F. J. Siepel, J. Veltman, and S. Stramigioli. Design and characterization of Stormram 4: an MRI-compatible robotic system for breast biopsy. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, pp. 928–933, 2017.

  32. Heikkilä, T., S. Yrjänä, P. Kilpeläinen, J. Koivukangas, and M. Sallinen. An assistive surgical MRI compatible robot: first prototype with field tests. InTech, Available from: https://www.intechopen.com/books/explicative-cases-of-controversial-issues-in-neurosurgery/an-assistive-surgical-mri-compatible-robot-first-prototype-with-field-tests, 2012.

  33. Ho, M., A. McMillan, J. Simard, R. Gullapalli, and J. Desai. Toward a meso-scale SMA-actuated MRI-compatible Neurosurgical Robot. IEEE Trans. Rob. 99:1–10, 2011.

    Google Scholar 

  34. Hoeks, C. M., J. O. Barentsz, T. Hambrock, D. Yakar, D. M. Somford, S. W. Heijmink, T. W. Scheenen, P. C. Vos, H. Huisman, I. M. van Oort, J. A. Witjes, A. Heerschap, and J. J. Fütterer. Prostate cancer: multiparametric MR imaging for detection, localization, and staging. Radiology 261(1):46–66, 2011.

    Article  PubMed  Google Scholar 

  35. https://www.medicalnewstoday.com/articles/146309.php.

  36. Intuitive Surgical Inc. [Online]. http://www.davincisurgery.com/da-vinci-surgery/da-vinci-surgical-system/?gclid=Cj0KCQiA-qDTBRD-ARIsAJ_10yJhiGRLKRZKAR_e0CQWLdEULMXmwy2DPWhoN4VLQpNknAJffbi0Y24aAjNXEALw_wcB.

  37. Jiang, S., F. Sun, W. Feng, L. F. Hofman, and Y. Yu. Analysis of a novel high-precision 5-degrees of freedom magnetic resonance imaging-compatible surgery robot for needle-insertion prostate brachytherapy. Proc. Inst. Mech. Eng. Part C 228(5):865–876, 2013.

    Article  Google Scholar 

  38. Kaiser, W. A., H. Fischer, J. Vagner, and M. Selig. Robotic system for biopsy and therapy of breast lesions in a high-field whole-body magnetic resonance tomography unit. Invest. Radiol. 35(8):513–519, 2000.

    Article  CAS  PubMed  Google Scholar 

  39. Kaufmann, S., J. Mischinger, B. Amend, S. Rausch, M. Adam, M. Scharp, F. Fend, U. Kramer, M. Notohamiprodjo, K. Nikolaou, A. Stenzl, J. Bedke, and S. Kruck. First report of robot–assisted transperineal fusion versus off–target biopsy in patients undergoing repeat prostate biopsy. World J. Urol. 35:1023–1029, 2017.

    Article  CAS  PubMed  Google Scholar 

  40. Khabsa, M., and C. L. Giles. The number of scholarly documents on the public web. PLoS ONE 9(5):e93949, 2017. https://doi.org/10.1371/journal.pone.0093949.

    Article  CAS  Google Scholar 

  41. Kim, Y., S. S. Cheng, M. Diakite, R. P. Gullapalli, J. M. Simard, and J. P. Desai. Toward the development of a flexible mesoscale MRI-compatible neurosurgical continuum robot. IEEE Trans. Rob. 33(6):1386–1397, 2017.

    Article  Google Scholar 

  42. Kim, J. S., D. Levi, R. Monfaredi, K. Cleary and I. Iordachita. A new 4-DOF parallel robot for MRI-guided percutaneous interventions: kinematic analysis. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Seogwipo, pp. 4251–4255, 2017.

  43. Krieger, A., S. E. Song, N. B. Cho, I. Iordachita, P. Guion, G. Fichtinger, and L. Whitcomb. Development and evaluation of an actuated MRI-compatible robotic system for MRI-guided prostate intervention. IEEE/ASME Trans. Mechatron. 18(1):273–284, 2013.

    Article  Google Scholar 

  44. Krieger, A., R. C. Susil, C. Menard, J. A. Coleman, G. Fichtinger, E. Atalar, and L. L. Whitcom. Design of a novel MRI compatible manipulator for image guided prostateinterventions. IEEE Trans. Biomed. Eng. 52(2):306–313, 2005.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lang, M., A. Greer, and G. Sutherland. Intra-operative robotics: neuroArm. Intraoperative Imaging 109:231–236, 2011.

    Article  Google Scholar 

  46. Larson, P., P. A. Starr, J. L. Ostrem, N. Galifianakis, M. S. L. Palenzuela, and A. Martin. Application accuracy of a second generation interventional MRI stereotactic platform: initial experience in 101 DBS electrode implantations. Neurosurgery 60:187, 2013.

    Article  Google Scholar 

  47. Larson, B. T., N. V. Tsekos, and A. G. Erdman. A robotic device for minimally invasive breast interventions with real-time MRI guidance. In: Third IEEE Symposium on Bioinformatics and Bioengineering, Bethesda, 2003.

  48. Li, Gang, Su Hao, Gregory A. Cole, Weijian Shang, Kevin Harrington, Alex Camilo, Julie G. Pilitsis, and Gregory S. Fischer. Robotic System for MRI-Guided Stereotactic Neurosurgery. IEEE Trans. Biomed. Eng. 62(4):1077–1088, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Li, M., A. Kapoory, D. Mazilu, B. Woody, and K. A. Horvath. Cardiac Interventions under MRI guidance using robotic assistance. In: IEEE International Conference on Robotics and Automation (ICRA), Anchorage, 2010.

  50. Li, G., H. Su, J. Tokuda, N. Hata, C. M. Tempany, and G. S. Fischer. A fully actuated robotic assistant for MRI-guided prostate biopsy and brachytherapy. In: Proceedings of SPIE the International Society for Optical Engineering, 2014.

  51. Masamune, K., E. Kobayashi, Y. Masutani, M. Suzuki, T. Dohi, H. Iseki, and K. Takakura. Development of an MRI-compatible needle insertion manipulator for stereotactic neurosurgery. J Image Guid Surg. 1(4):242–248, 1995.

    Article  CAS  PubMed  Google Scholar 

  52. McClure, Ashley. Using high-intensity focused ultrasound as a means to provide targeted drug delivery: a literature review. J. Diagn. Med. Sonogr. 32(6):343–350, 2016.

    Article  Google Scholar 

  53. Medtronic. [Online]. http://www.medtronic.com/us-en/healthcare-professionals/products/neurological/laser-ablation/visualase.html.

  54. Melzer, A., B. Gutmann, T. Remmele, R. Wolf, A. Lukoscheck, M. Bock, H. Bardenheuer, and H. Fischer. INNOMOTION for percutaneous image-guided interventions: principles and evaluation of this MR- and CT-compatible robotic system. IEEE Eng. Med. Biol. Mag. 27(3):66–73, 2008.

    Article  PubMed  Google Scholar 

  55. Miller, J. G., M. Li, D. Mazilu, T. Hunt, and K. A. Horvath. Robot-assisted real-time magnetic resonance image guided transcatheter aortic valve replacement. J. Thorac. Cardiovasc. Surg. 51(5):1407–1412, 2016.

    Article  Google Scholar 

  56. Miller, D., N. Smith, M. Bailey, G. Czarnota, K. Hynynen, and I. Makin. Overview of therapeutic ultrasound applications and safety considerations. J. Ultrasound Med. 31(4):623–634, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Monfaredi, R., R. Seifabadi, G. Fichtinger, I. Iordachita. Design of a decoupled MRI-compatible force sensor using fiber Bragg grating sensors for robot-assisted prostate interventions. In: Image-Guided Procedures, Robotic Interventions, and Modeling: Medical Imaging, 2013.

  58. Monfaredi, R., R. Seifabadi, I. Iordachita, R. Sze, N.M. Safdar, K. Sharma, S. Fricke, A. Krieger, and K. Cleary. A prototype body-mounted MRI-compatible robot for needle guidance in shoulder arthrography, In: Proceedings of the IEEE RAS & EMBS International Conference. Biomedical Robotics and Biomechatronics (BioRob), Sao Paulo, pp. 40–45, 2014.

  59. Monfaredi, R., E. Wilson, R. Sze, K. Sharma, B. Azizi, I. Iordachita, and K. Cleary. Shoulder-mounted robot for mri-guided arthrography: accuracy and mounting study. In: International Conference of the IEEE Engineering in Medicine and Biology Society pp. 3643–3646, 2015.

  60. Monteris. [Online]. https://www.monteris.com/our-technology/neuroblate-system/.

  61. Mozer, P. C., A. W. Partin, and D. Stoianovici. Robotic image-guided needle interventions of the prostate. Rev. Urol. 11(1):7–15, 2009.

    PubMed  PubMed Central  Google Scholar 

  62. Navarro-Alarcon, D., S. Singh, T. Zhang, H. L. Chung, K. W. Ng, M. K. Chow, and Y. Liu. Developing a compact robotic needle driver for MRI-guided breast biopsy in tight environments. IEEE Robot. Autom. Lett. 2(3):1648–1655, 2017.

    Article  Google Scholar 

  63. Nycz, C. J., R. Gondokaryono, P. Carvalho, N. Patel, M. Wartenberg, J. G. Pilitsis, and G. S. Fischer. Mechanical validation of an MRI compatible stereotactic neurosurgery robot in preparation for pre-clinical trials. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1677–1684, 2017.

  64. Nycz, C. J., R. Gondokaryono, P. Carvalho, N. Patel, M. Wartenberg, J. G. Pilitsis, and G. S. Fischer. Mechanical validation of an MRI compatible stereotactic neurosurgery robot in preparation for pre-clinical trials. In Intelligent Robots and Systems (IROS), 2017.

  65. Ouchi, R., K. Saotome, A. Matsushita, and K. Suzuki. Development of an MRI-powered robotic system for cryoablation. In: IEEE 37th Annual International Conference of Engineering in Medicine and Biology Society (EMBC), Milan, pp. 1186–1189, 2015.

  66. Park, S. B., J. G. Kim, K. W. Lim, C. H. Yoon, D. J. Kim, H. S. Kang, and Y. H. Jo. A magnetic resonance image-guided breast needle intervention robot system: overview and design considerations. Int. J. Comput. Assist. Radiol. Surg. 12(08):1319–1331, 2017.

    Article  PubMed  Google Scholar 

  67. Riffel, P., R. K. Rao, S. Haneder, M. Meyer, S. O. Schoenberg, and H. J. Michaely. Impact of field strength and RF excitation on abdominal diffusion-weighted magnetic resonance imaging. World J Radiol. 5(9):334–344, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Schouten, M. G., J. G. Bomers, D. Yakar, H. Huisman, E. Rothgang, D. Bosboom, T. W. Scheenen, S. Misra, and J. J. Fütterer. Evaluation of a robotic technique for transrectal MRI-guided prostate biopsies. Eur. Radiol. 22(2):476–483, 2012.

    Article  PubMed  Google Scholar 

  69. Seifabadi, R., F. Aalamifar, I. Iordachita, and G. Fichtinger. Toward teleoperated needle steering under continuous MRI guidance for prostate percutaneous interventions. Int. J. Med.l Robot. Comput. Assist Surg. 12:355–369, 2016.

    Article  Google Scholar 

  70. Shang, W. and G. S. Fischer. A high accuracy multi-image registration method for tracking MRI-guided robots. In: Image-Guided Procedures, Robotic Interventions, and Modeling, 2012.

  71. Shellock, F. G., and J. V. Crues. MR safety and the american college of radiology. Am. J. Roentgenol. 178(6):1349–1352, 2002.

    Article  Google Scholar 

  72. Shokrollahi, P., J. M. Drake, and A. A. Goldenberg. Quantification of force and torque applied by a high-field magnetic resonance imaging system on an ultrasonic motor for mri-guided robot-assisted interventions. Actuators. 6, 2017.

  73. Siegel, R. L., K. D. Miller, and A. Jemal. Cancer statistics, 2015. Cancer J. Clin. 65:5–29, 2015.

    Article  Google Scholar 

  74. Song, S. E., N. B. Cho, G. Fischer, N. Hata, C. Tempany, G. Fichtinger, and I. Iordachita. Development of a pneumatic robot for mri-guided transperineal prostate biopsy and brachytherapy: new approaches. In: IEEE International Conference on Robotics and Automation, 2010.

  75. Song, S. E., N. Cho, J. Tokuda, N. Hata, C. Tempany, G. Fichtinger, and .I Iordachita. Preliminary evaluation of a MRI-compatible modular robotic system for MRI-guided prostate interventions. In: Proceeding of the IEEE RAS EMBS International Conference Biomed Robot Biomechatron, Tokyo, pp. 796–801, 2010.

  76. Song, S., N. Hata, I. Iordachita, G. Fichtinger, C. Tempany, and J. Tokuda. A workspace-oriented needle guiding robot for 3T MRI-guided transperineal prostate intervention: evaluation of in-bore workspace and MRI compatibility. Int. J. Med. Robot. 9(1):67–74, 2013.

    Article  PubMed  Google Scholar 

  77. Squires, A., J. H. Oshinski, N. M. Boulis, and Z. T. H. Tse. SpinoBot: an MRI-guided needle positioning system for spinal cellular therapeutics. Ann. Biomed. Eng. 46:1–13, 2017.

    Google Scholar 

  78. Srimathveeravalli, Govindarajan, Chunwoo Kim, Doru Petrisor, Paula Ezell, Jonathan Coleman, Hedvig Hricak, Stephen B. Solomon, and Dan Stoianovici. MRI-safe robot for targeted transrectal prostate biopsy: animal experiments. BJU Int. 113(6):977–985, 2014.

    Article  PubMed  Google Scholar 

  79. Starr, P. A., A. J. Martin, J. L. Ostrem, P. Talke, N. Levesque, and P. S. Larson. Subthalamic nucleus deep brain stimulator placement using high-field interventional magnetic resonance imaging and a skullmounted aiming device: technique and application accuracy. J. Neurosurg. 112(3):479–490, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Stoianovici, D., C. Jun, S. Lim, P. Li, D. Petrisor, S. Fricke, K. Sharma, and K. Cleary. Multi-imager compatible, MR safe, remote center of motion needle-guide robot. IEEE Transactions on Biomedical Engineering, vol. TBD, no. TBD, 2017.

  81. Stoianovici, D., C. Jun, S. Lim, P. Li, D. Petrisor, S. Fricke, K. Sharma, and K. Cleary. Multi-imager compatible, MR safe, remote center of motion needle-guide robot. IEEE Trans. Biomed. Eng. 65(1):165–177, 2018.

    Article  PubMed  Google Scholar 

  82. Stoianovici, D., A. Patriciu, D. Mazilu, D. Petrisor, and L. Kavoussi. A new typeof motor: pneumatic step motor. IEEE/ASME Trans. Mechatron. 12(1):98–106, 2007.

    Article  Google Scholar 

  83. Su, H., A. Camilo, G. A. Cole, N. Hata, C. M. Tempany, and G. S. Fischer. High-field MRI-compatible needle placement robot for prostate interventions. Stud. Health Technol. Inform. 163:623–629, 2011.

    PubMed  PubMed Central  Google Scholar 

  84. Su, H., I. I. Iordachita, X. Yan, G. A. Cole, and G. S. Fischer. Reconfigurable MRI-guided robotic surgical manipulator: prostate brachytherapy and neurosurgery applications. In: 33rd Annual International Conference of the IEEE EMBS, Boston, pp. 2111–2114, 2011.

  85. Su, H., I. Iordachita, J. Tokuda, N. Hata, X. Liu, R. Seifabadi, S. Xu, B. Wood, and G. S. Fischer. Fiber-optic force sensors for MRI-guided interventions and rehabilitation: a review. IEEE Sens. J. 17(7):1952–1963, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Su, H., W. Shang, G. Cole, G. Li, K. Harrington, A. Camilo, J. Tokuda, C. M. Tempany, N. Hata, and G. S. Fischer. Piezoelectrically actuated robotic system for MRI-guided prostate percutaneous therapy. IEEE ASME Trans. Mechatron. 20(4):1920–1932, 2015.

    Article  PubMed  Google Scholar 

  87. Sutherland, G. R., S. Lama, L. Shi Gan, S. Wolfsberger, and K. Zareinia. Merging machines with microsurgery: clinical experience with neuroArm. J. Neurosurg. 118(3):521–529, 2013.

    Article  PubMed  Google Scholar 

  88. Tavallaei, M. A., Y. Thakur, S. Haider, and M. Drangova. A magnetic-resonance-imaging-compatible remot catheter navigation system. IEEE Trans. Biomed. Eng. 60(4):899–905, 2013.

    Article  PubMed  Google Scholar 

  89. Tokuda, J., G. S. Fischer, S. P. DiMaio, D. G. Gobbi, C. Csoma, P. W. Mewes, G. Fichtinger, C. M. Tempany, and N. Hata. Integrated navigation and control software system for MRI-guided robotic prostate interventions. Comput. Med. Imaging Graph. 34(1):3–8, 2010.

    Article  PubMed  Google Scholar 

  90. Tokuda, J., S. E. Song, G. S. Fischer, I. Iordachita, R. Seifabadi, N. B. Cho, K. Tuncali, G. Fichtinger, C. M. Tempany, and N. Hata. Preclinical evaluation of an MRI-compatible pneumatic robot for angulated needle placement in transperineal prostate interventions. Int. J. Comput. Assist. Radiol. Surg. 7(6):949–957, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Tokuda, J., S. E. Song, K. Tuncali, C. Tempany, and N. Hata. Configurable automatic detection and registration of fiducial frames for device-to-image registration in mri-guided prostate interventions. Med. Image Comput. Comput. Assist. Interv. 16(03):355–362, 2013.

    PubMed  PubMed Central  Google Scholar 

  92. Tsekos, N. V., A. Khanicheh, E. Christoforou, and C. Mavroidis. Magnetic resonance-compatible robotic and mechatronics systems for image-guided interventions and rehabilitation: a review study. Annu. Rev. Biomed. Eng. 9:351–387, 2007.

    Article  CAS  PubMed  Google Scholar 

  93. Varma, T., P. Eldridge, A. Forster, S. Fox, N. Fletcher, M. Steiger, P. Littlechild, P. Byrne, A. Sinnott, and K. Tyler. Use of the NeuroMate stereotactic robot in a frameless mode for movement disorder surgery. Stereotact. Funct. Neurosurg. 80(1–4):132–135, 2004.

    Google Scholar 

  94. Vartholomeos, P., C. Bergeles, L. Qin, and P. E. Dupont. An MRI-powered and controlled actuator technology for tetherless robotic interventions. Int. J. Botic. Res. 32(13):1536–1552, 2013.

    Google Scholar 

  95. Volkin, D., B. Turkbey, A. N. Hoang, S. Rais-Bahrami, N. Yerram, A. Walton-Diaz, J. W. Nix, B. J. Wood, P. L. Choyke, and P. A. Pinto. Multiparametric magnetic resonance imaging (MRI) and subsequent MRI/ultrasonography fusion-guided biopsy increase the detection of anteriorly located prostate cancers. BJU Int. 114(6b):E43–E49, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. What are the key statistics about breast cancer? American Cancer Society. http://www.cancer.org/cancer/breastcancer/detailedguide/breast-cancer-key-statistics. Accessed 29 April 2016.

  97. Xu, H., A. Lasso, S. Vikal, P. Guion, A. Krieger, A. Kaushal, L.L. Whitcomb, and G. Fichtinger. Clinical accuracy of robot-assisted prostate biopsy in closed MRI scanner. In: The Hamlyn Symposium on Medical Robotics, London, pp. 7–8, 2010.

  98. Yang, B., S. Roys, U. X. Tan, M. Philip, H. Richard, R. Gullapalli, and J. P. Desai. Design, development, and evaluation of a Master-Slave surgical system for breast biopsy under continuous MRI. Int. J. Rob. Res. 33(4):616–630, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Yiallouras, C., K. Ioannides, T. Dadakova, M. Pavlina, M. Bock, and C. Damianou. Three-axis MR-conditional robot for high-intensity focused ultrasound for treating prostate diseases transrectally. J. Ther. Ultrasound 3:2, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Zandman, J., E. E. G. Hekman, F. van der Heijden, R. Borra, and S. Misra. The MIRIAM robot: a novel robotic system for MR-guided needle insertion in the prostate. J. Med. Robot. Res. 2(3):1750006, 2017.

    Google Scholar 

  101. Zhang, T., D. N. Alarcon, K. W. Ng, M. K. Chow, Y. H. Liu, and H. L. Chung: A novel palm-shape breast deformation robot for MRI-guided biopsy. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, 2016.

  102. Zhang, Y., M. Lu and H. Du. Kinematics analysis and trajectory planning for a breast intervention robot under MRI environment. In: IEEE International Conference on Cyborg and Bionic Systems (CBS), Beijing, pp. 237–242, 2017.

Download references

Acknowledgments

This work was partially supported by the National Institutes of Health (NIH) under Grants R01EB020003, R01CA172244, and R21EB020700.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Monfaredi.

Additional information

Associate Editor Daniel Elson oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monfaredi, R., Cleary, K. & Sharma, K. MRI Robots for Needle-Based Interventions: Systems and Technology. Ann Biomed Eng 46, 1479–1497 (2018). https://doi.org/10.1007/s10439-018-2075-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-2075-x

Keywords

Navigation