Skip to main content
Log in

The Contributions of Individual Muscle–Tendon Units to the Plantarflexor Group Force–Length Properties

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The combined force–length (F–L) properties of a muscle group acting synergistically at a joint are determined by several aspects of the F–L properties of the individual musculotendon units. Namely, misalignment of the optimal lengths of the individual muscles will affect the group F–L properties. This misalignment, which we named \(M_{\text{opt}}^{\text{MT}}\), arises from the properties of the muscles (i.e., optimum fiber length and pennation angle) and of their tendons (i.e., compliance and slack length). The aim of this study was to measure the F–L properties of kangaroo rat plantarflexors as a group and individually and determine the effects of \(M_{\text{opt}}^{\text{MT}}\) on the group F–L properties. Specifically, we performed a sensitivity analysis to quantify how \(M_{\text{opt}}^{\text{MT}}\) influences the tradeoff between maximizing the peak force vs. having a wider group F–L curve. In the kangaroo rat, we found that the optimal lengths of two bi-articular musculotendon units, the plantaris and the gastrocnemius, were misaligned by 1.8 mm, but this amount favored maximal peak force rather than increasing F–L curve width. Because we measured the misalignment in situ, we could directly assess the tradeoff between maximizing peak force vs. a wider F–L curve without making modeling assumptions about the individual muscle or tendon properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

F:

Force measured by servomotor (N)

\(L^{\text{MT}}\) :

Musculotendon length equal to distance between origin of muscles and motor arm (mm)

\(\Delta L^{\text{MT}}\) :

Change in musculotendon length (mm)

FGRP :

Musculotendon force of the muscle group (N)

\(F_{\text{a}}^{\text{GRP}}\) :

Active force of muscle group (N)

\(F_{\text{p}}^{\text{GRP}}\) :

Passive force of muscle group (N)

\(F_{\text{a}}^{\text{M}}\) :

Active force of muscle M (either gastrocnemius (GAS) or plantaris (PL)) (N)

\(F_{\text{p}}^{\text{M}}\) :

Passive force of muscle M (N)

\(F_{\text{o}}^{\text{GRP}}\) :

Maximum isometric force of the muscle group (N)

\(F_{\text{o}}^{\text{M}}\) :

Maximum isometric force of the muscle M (N)

\(L_{\text{o - GRP}}^{\text{MT}}\) :

Musculotendon length at maximum isometric force of muscle group (mm)

\(L_{\text{o}}^{{{\text{MT}}^{ *} }}\) :

Initial musculotendon length, which is an estimation of \(L_{\text{o - GRP}}^{\text{MT}}\) (mm)

\(L_{\text{o - M}}^{\text{MT}}\) :

Musculotendon length at maximum isometric force of muscle M (mm)

\(L_{\text{o}}^{\text{M}}\) :

The length of muscle belly M at maximum isometric force of muscle M (mm)

\(L_{\text{c}}^{\text{M}}\) :

Distance between the pair of sonometric crystals inserted into muscle M (mm)

\(L_{\text{o - c}}^{\text{M}}\) :

Distance between crystal pair at maximum isometric force of muscle M (mm)

\(\theta_{\text{f}}^{\text{M}}\) :

Pennation angle of muscle M (degrees)

\(L_{\text{f}}^{\text{M}}\) :

Fiber length of muscle M (mm)

\({\text{CSA}}^{\text{M}}\) :

Functional cross sectional area of muscle M (mm2)

\(\sigma_{\max}\) :

Maximum isometric stress (kPa)

\(L_{\text{s - M}}^{\text{T}}\) :

Slack length of the tendon of muscle M (mm)

\(\varepsilon_{\text{max - M}}^{\text{T}}\) :

Tendon strain of muscle M at its maximum isometric force (%\(L_{\text{s - M}}^{\text{T}}\))

\({\text{L}}^{\text{ac}}\) :

Relative displacement between the two muscle–tendon units (mm)

\(M_{\text{opt}}^{\text{MT}}\) :

Distance between \(L_{\text{o - M}}^{\text{MT}}\) of two different muscles (mm)

\(F_{\max}\) :

Maximum force of the F–L curve of muscle group calculated by model (N)

W:

Width of the F–L curve of the muscle group calculated by model (mm)

References

  1. Ackland, D. C., Y. C. Lin, and M. G. Pandy. Sensitivity of model predictions of muscle function to changes in moment arms and muscle-tendon properties: a Monte-Carlo analysis. J. Biomech. 45:1463–1471, 2012.

    Article  Google Scholar 

  2. Biewener, A. A., and R. Blickhan. Kangaroo rat locomotion: design for elastic energy storage or acceleration? J. Exp. Biol. 140:243–255, 1988.

    CAS  PubMed  Google Scholar 

  3. Biewener, A. A., R. Blickhan, A. K. Perry, N. C. Heglund, and C. R. Taylor. Muscle forces during locomotion in kangaroo rats: force platform and tendon buckle measurements compared. J. Exp. Biol. 137:191–205, 1988.

    CAS  PubMed  Google Scholar 

  4. Dalton, B. H., M. D. Allen, G. A. Power, A. A. Vandervoort, and C. L. Rice. The effect of knee joint angle on plantar flexor power in young and old men. Exp. Gerontol. 52:70–76, 2014.

    Article  Google Scholar 

  5. De Groote, F., A. Van Campen, I. Jonkers, and J. De Schutter. Sensitivity of dynamic simulations of gait and dynamometer experiments to hill muscle model parameters of knee flexors and extensors. J. Biomech. 43:1876–1883, 2010.

    Article  Google Scholar 

  6. Fukashiro, S., M. Rob, Y. Ichinose, Y. Kawakami, and T. Fukunaga. Ultrasonography gives directly but noninvasively elastic characteristic of human tendon in vivo. Eur. J. Appl. Physiol. Occup. Physiol. 71:555–557, 1995.

    Article  CAS  Google Scholar 

  7. Hasson, C. J., and G. E. Caldwell. Effects of age on mechanical properties of dorsiflexor and plantarflexor muscles. Ann. Biomed. Eng. 40:1088–1101, 2012.

    Article  Google Scholar 

  8. Herzog, W. Skeletal muscle mechanics: questions, problems and possible solutions. J. Neuroeng. Rehabil. 14:1–17, 2017.

    Article  Google Scholar 

  9. Hicks, J. L., T. K. Uchida, A. Seth, A. Rajagopal, and S. L. Delp. Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of movement. J. Biomech. Eng. 137:020905, 2015.

    Article  Google Scholar 

  10. Kawakami, Y., Y. Ichinose, and T. Fukunaga. Architectural and functional features of human triceps surae muscles during contraction. J. Appl. Physiol. 85:398–404, 1998.

    Article  CAS  Google Scholar 

  11. Landin, D., M. Thompson, and M. Reid. Knee and Ankle joint angles influence the plantarflexion torque of the gastrocnemius. J. Clin. Med. Res. 7:602–606, 2015.

    Article  Google Scholar 

  12. Lauber, B., G. A. Lichtwark, and A. G. Cresswell. Reciprocal activation of gastrocnemius and soleus motor units is associated with fascicle length change during knee flexion. Physiol. Rep. 2:e12044, 2014.

    Article  Google Scholar 

  13. Maas, H., G. C. Baan, and P. A. Huijing. Muscle force is determined also by muscle relative position: isolated effects. J. Biomech. 37:99–110, 2004.

    Article  Google Scholar 

  14. Maas, H., and T. G. Sandercock. Force transmission between synergistic skeletal muscles through connective tissue linkages. J. Biomed. Biotechnol. 1–9:2010, 2010.

    Google Scholar 

  15. Mendez, J., and A. Keys. Density and composition of mammalian muscle. Metabolism 9:184–188, 1960.

    CAS  Google Scholar 

  16. Olesen, A. T., B. R. Jensen, T. L. Uhlendorf, R. W. Cohen, G. C. Baan, and H. Maas. Muscle-specific changes in length-force characteristics of the calf muscles in the spastic Han-Wistar rat. J. Appl. Physiol. 117:989–997, 2014.

    Article  Google Scholar 

  17. Powell, P. L., R. R. Roy, P. Kanim, M. A. Bello, and V. R. Edgerton. Predictability of skeletal muscle tension from architectural determinations in guinea pig hindlimbs. J. Appl. Physiol. 57:1715–1721, 1984.

    Article  CAS  Google Scholar 

  18. Rajagopal, A., C. L. Dembia, M. S. DeMers, D. D. Delp, J. L. Hicks, and S. L. Delp. Full-body musculoskeletal model for muscle-driven simulation of human gait. IEEE Trans. Biomed. Eng. 63:2068–2079, 2016.

    Article  Google Scholar 

  19. Rankin, J. W., K. M. Doney, and C. P. McGowan. Functional capacity of kangaroo rat hindlimbs: adaptations for locomotor performance. J. R. Soc. Interface 15:20180303, 2018.

    Article  Google Scholar 

  20. Rassier, D. E., B. R. MacIntosh, and W. Herzog. Length dependence of active force production in skeletal muscle. J. Appl. Physiol. 86:1445–1457, 1999.

    Article  CAS  Google Scholar 

  21. Rehwaldt, J. D., B. D. Rodgers, and D. C. Lin. Skeletal muscle contractile properties in a novel murine model for limb girdle muscular dystrophy 2i. J. Appl. Physiol. 123:1698–1707, 2017.

    Article  Google Scholar 

  22. Rijkelijkhuizen, J. M., G. C. Baan, A. de Haan, C. J. de Ruiter, and P. A. Huijing. Extramuscular myofascial force transmission for in situ rat medial gastrocnemius and plantaris muscles in progressive stages of dissection. J. Exp. Biol. 208:129–140, 2005.

    Article  CAS  Google Scholar 

  23. Rospars, J. P., and N. Meyer-Vernet. Force per cross-sectional area from molecules to muscles: a general property of biological motors. R. Soc. Open Sci. 3:160313, 2016.

    Article  Google Scholar 

  24. Rugg, S. G., R. J. Gregor, B. R. Mandelbaum, and L. Chiu. In vivo moment arm calculations at the ankle using magnetic resonance imaging (MRI). J. Biomech. 23:495–501, 1990.

    Article  CAS  Google Scholar 

  25. Schwaner, M. J., D. C. Lin, and C. P. McGowan. Jumping mechanics of desert kangaroo rats. J. Exp. Biol. 221:jeb186700, 2018.

    Article  Google Scholar 

  26. Scovil, C. Y., and J. L. Ronsky. Sensitivity of a Hill-based muscle model to perturbations in model parameters. J. Biomech. 39:2055–2063, 2006.

    Article  Google Scholar 

  27. Tijs, C., J. H. Van Dieën, G. C. Baan, and H. Maas. Three-dimensional ankle moments and nonlinear summation of rat triceps surae muscles. PLoS ONE 9:e111595, 2014.

    Article  Google Scholar 

  28. Tijs, C., J. H. van Dieën, G. C. Baan, and H. Maas. Synergistic co-activation increases the extent of mechanical interaction between rat ankle plantar-flexors. Front. Physiol. 7:1–8, 2016.

    Article  Google Scholar 

  29. Tijs, C., J. H. van Dieen, and H. Maas. No functionally relevant mechanical effects of epimuscular myofascial connections between rat ankle plantar flexors. J. Exp. Biol. 218:2935–2941, 2015.

    Article  Google Scholar 

  30. Xiao, M., and J. Higginson. Sensitivity of estimated muscle force in forward simulation of normal walking. J. Appl. Biomech. 26:142–149, 2010.

    Article  Google Scholar 

Download references

Acknowledgments

Work supported by Army Research Office #66554-EG (DCL and CPM) and National Science Foundation #1553550 (CPM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Lin.

Additional information

Associate Editor Dan Elson oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javidi, M., McGowan, C.P. & Lin, D.C. The Contributions of Individual Muscle–Tendon Units to the Plantarflexor Group Force–Length Properties. Ann Biomed Eng 47, 2168–2177 (2019). https://doi.org/10.1007/s10439-019-02288-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02288-z

Keywords

Navigation