Skip to main content
Log in

Effects of Age on Mechanical Properties of Dorsiflexor and Plantarflexor Muscles

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Redundancy in the human muscular system makes it challenging to assess age-related changes in muscle mechanical properties in vivo, as ethical considerations prohibit direct muscle force measurement. We overcame this by using a hybrid approach that combined magnetic resonance and ultrasound imaging, dynamometer measurements, muscle modeling, and numerical optimization to obtain subject-specific estimates of the mechanical properties of tibialis anterior, gastrocnemius, and soleus muscles from young and older adults. We hypothesized that older subjects would have lower maximal isometric forces, slower contractile and stiffer elastic characteristics, and that subject-specific muscle properties would give more accurate joint torque predictions compared to generic properties. Unknown muscle model parameters were obtained by minimizing the difference between simulated and actual subject torque-time histories under both isometric and isovelocity conditions. The resulting subject-specific models showed age- and gender-related differences, with older adults displaying reduced maximal isometric forces, slower force–velocity and altered force–length properties and stiffer elasticity. Tibialis anterior was least affected by aging. Subject-specific models gave good predictions of experimental concentric torque-time histories (10–14% error), but were less accurate for eccentric conditions. With generic muscle properties prediction errors were about twice as large. For maximum predictive power, musculoskeletal models should be tailored to individual subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agur, A. M., V. Ng Thow Hing, K. A. Ball, E. Fiume, and N. H. McKee. Documentation and three dimensional modelling of human soleus muscle architecture. Clin. Anat. 16:285–293, 2003.

    Article  PubMed  Google Scholar 

  2. Arnold, E. M., S. R. Ward, R. L. Lieber, and S. L. Delp. A model of the lower limb for analysis of human movement. Ann. Biomed. Eng. 38:269–279, 2010.

    Article  PubMed  Google Scholar 

  3. Bahler, A. S. Series elastic component of mammalian skeletal muscle. Am. J. Physiol. 213:1560–1564, 1967.

    PubMed  CAS  Google Scholar 

  4. Bahler, A. S. Modeling of mammalian skeletal muscle. IEEE Trans. Biomed. Eng. 15:249–257, 1968.

    Article  PubMed  CAS  Google Scholar 

  5. Baumgartner, R. N., D. L. Waters, D. Gallagher, J. E. Morley, and P. J. Garry. Predictors of skeletal muscle mass in elderly men and women. Mech. Ageing Dev. 107:123–136, 1999.

    Article  PubMed  CAS  Google Scholar 

  6. Blanpied, P., and G. L. Smidt. The difference in stiffness of the active plantarflexors between young and elderly human females. J. Gerontol. 48:M58–M63, 1993.

    PubMed  CAS  Google Scholar 

  7. Bobbert, M. F., and G. J. van Ingen Schenau. Isokinetic plantar flexion: experimental results and model calculations. J. Biomech. 23:105–119, 1990.

    Article  PubMed  CAS  Google Scholar 

  8. Bojsen-Moller, J., P. Hansen, P. Aagaard, U. Svantesson, M. Kjaer, and S. P. Magnusson. Differential displacement of the human soleus and medial gastrocnemius aponeuroses during isometric plantar flexor contractions in vivo. J. Appl. Physiol. 97:1908–1914, 2004.

    Article  PubMed  Google Scholar 

  9. Brand, R. A., D. R. Pedersen, and J. A. Friederich. The sensitivity of muscle force predictions to changes in physiologic cross-sectional area. J. Biomech. 19:589–596, 1986.

    Article  PubMed  CAS  Google Scholar 

  10. Buchanan, T. S., D. G. Lloyd, K. Manal, and T. F. Besier. Estimation of muscle forces and joint moments using a forward-inverse dynamics model. Med. Sci. Sports Exerc. 37:1911–1916, 2005.

    Article  PubMed  Google Scholar 

  11. Caldwell, G. E., and A. E. Chapman. The general distribution problem: a physiological solution which includes antagonism. Hum. Mov. Sci. 10:355–392, 1991.

    Article  Google Scholar 

  12. Chino, K., T. Oda, T. Kurihara, T. Nagayoshi, K. Yoshikawa, H. Kanehisa, T. Fukunaga, S. Fukashiro, and Y. Kawakami. In vivo fascicle behavior of synergistic muscles in concentric and eccentric plantar flexions in humans. J. Electromyogr. Kinesiol. 18:79–88, 2008.

    Article  PubMed  Google Scholar 

  13. Close, R. Dynamic properties of fast and slow skeletal muscles of the rat after nerve cross-union. J. Physiol. 204:331–346, 1969.

    PubMed  CAS  Google Scholar 

  14. Close, R. I. Dynamic properties of mammalian skeletal muscles. Physiol. Rev. 52:129–197, 1972.

    PubMed  CAS  Google Scholar 

  15. Cook, C., and M. McDonagh. Force responses to controlled stretches of electrically stimulated human muscle–tendon complex. Exp. Physiol. 80:477–490, 1995.

    PubMed  CAS  Google Scholar 

  16. Delp, S. L., J. P. Loan, M. G. Hoy, F. E. Zajac, E. L. Topp, and J. M. Rosen. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 37:757–767, 1990.

    Article  PubMed  CAS  Google Scholar 

  17. Diffee, G. M., V. J. Caiozzo, R. E. Herrick, and K. M. Baldwin. Contractile and biochemical properties of rat soleus and plantaris after hindlimb suspension. Am. J. Physiol. Cell Physiol. 260:C528–C534, 1991.

    CAS  Google Scholar 

  18. Edman, K. A., C. Caputo, and F. Lou. Depression of tetanic force induced by loaded shortening of frog muscle fibres. J. Physiol. 466:535–552, 1993.

    PubMed  CAS  Google Scholar 

  19. Edman, K. A., G. Elzinga, and M. I. Noble. Enhancement of mechanical performance by stretch during tetanic contractions of vertebrate skeletal muscle fibres. J. Physiol. 281:139–155, 1978.

    PubMed  CAS  Google Scholar 

  20. Enoka, R. M. Eccentric contractions require unique activation strategies by the nervous system. J. Appl. Physiol. 81:2339–2346, 1996.

    PubMed  CAS  Google Scholar 

  21. Epstein, M., and W. Herzog. Theoretical Models of Skeletal Muscle. New York: Wiley, 1998.

    Google Scholar 

  22. FitzHugh, R. A model of optimal voluntary muscular control. J. Math. Biol. 4:203–236, 1977.

    Article  PubMed  CAS  Google Scholar 

  23. Frontera, W. R., D. Suh, L. S. Krivickas, V. A. Hughes, R. Goldstein, and R. Roubenoff. Skeletal muscle fiber quality in older men and women. Am. J. Physiol. Cell Physiol. 279:C611–C618, 2000.

    PubMed  CAS  Google Scholar 

  24. Fukashiro, S., M. Rob, Y. Ichinose, Y. Kawakami, and T. Fukunaga. Ultrasonography gives directly but noninvasively elastic characteristic of human tendon in vivo. Eur. J. Appl. Physiol. Occup. Physiol. 71:555–557, 1995.

    Article  PubMed  CAS  Google Scholar 

  25. Fukunaga, T., K. Kubo, Y. Kawakami, S. Fukashiro, H. Kanehisa, and C. N. Maganaris. In vivo behaviour of human muscle tendon during walking. Proc. R. Soc. B 268:229, 2001.

    Article  PubMed  CAS  Google Scholar 

  26. Garner, B. A., and M. G. Pandy. Estimation of musculotendon properties in the human upper limb. Ann. Biomed. Eng. 31:207–220, 2003.

    Article  PubMed  Google Scholar 

  27. Gordon, A. M., A. F. Huxley, and F. J. Julian. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. 184:170–192, 1966.

    PubMed  CAS  Google Scholar 

  28. Harman, S. M., E. J. Metter, J. D. Tobin, J. Pearson, and M. R. Blackman. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. J. Clin. Endocrinol. Metab. 86:724–731, 2001.

    Article  PubMed  CAS  Google Scholar 

  29. Hasson, C. J., J. A. Kent-Braun, and G. E. Caldwell. Contractile and non-contractile tissue volume and distribution in ankle muscles of young and older adults. J. Biomech. 44:2299–2306, 2011.

    Article  PubMed  Google Scholar 

  30. Hasson, C. J., R. H. Miller, and G. E. Caldwell. Contractile and elastic ankle joint muscular properties in young and older adults. PLoS One 6:e15953, 2011.

    Article  PubMed  CAS  Google Scholar 

  31. Henriksson-Larsén, K. B., J. Lexell, and M. Sjöström. Distribution of different fibre types in human skeletal muscles. I. Method for the preparation and analysis of cross-sections of whole tibialis anterior. Histochem. J. 15:167–178, 1983.

    Article  PubMed  Google Scholar 

  32. Hill, A. V. The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. B 126B:136–195, 1938.

    Article  Google Scholar 

  33. Hill, A. V. First and Last Experiments in Muscle Mechanics. London: Cambridge Press, 1970.

    Google Scholar 

  34. Hof, A. L. Muscle mechanics and neuromuscular control. J. Biomech. 36:1031–1038, 2003.

    Article  PubMed  CAS  Google Scholar 

  35. Hoy, M. G., F. E. Zajac, and M. E. Gordon. A musculoskeletal model of the human lower extremity: the effect of muscle, tendon, and moment arm on the moment–angle relationship of musculotendon actuators at the hip, knee, and ankle. J. Biomech. 23:157–169, 1990.

    Article  PubMed  CAS  Google Scholar 

  36. Huijing, P. A. Important experimental factors for skeletal muscle modelling: non-linear changes of muscle length force characteristics as a function of degree of activity. Eur. J. Morphol. 34:47–54, 1996.

    Article  PubMed  CAS  Google Scholar 

  37. Jakobsson, F., K. Borg, L. Edström, and L. Grimby. Use of motor units in relation to muscle fiber type and size in man. Muscle Nerve 11:1211–1218, 1988.

    Article  PubMed  CAS  Google Scholar 

  38. Johnson, M. A., J. Polgar, D. Weightman, and D. Appleton. Data on the distribution of fibre types in thirty-six human muscles: an autopsy study. J. Neurol. Sci. 18:111–129, 1973.

    Article  PubMed  CAS  Google Scholar 

  39. Kannus, P., M. Paavola, and L. Józsa. Aging and degeneration of tendons. In: Tendon Injuries: Basic Science and Clinical Medicine, edited by N. Maffulli, P. Renström, and W. B. Leadbetter. London: Springer, 2005, pp. 25–31.

    Google Scholar 

  40. Kent-Braun, J. A., and A. V. Ng. Specific strength and voluntary muscle activation in young and elderly women and men. J. Appl. Physiol. 87:22–29, 1999.

    PubMed  CAS  Google Scholar 

  41. Klass, M., S. Baudry, and J. Duchateau. Aging does not affect voluntary activation of the ankle dorsiflexors during isometric, concentric, and eccentric contractions. J. Appl. Physiol. 99:31–38, 2005.

    Article  PubMed  Google Scholar 

  42. Lanza, I. R., T. F. Towse, G. E. Caldwell, D. M. Wigmore, and J. A. Kent-Braun. Effects of age on human muscle torque, velocity, and power in two muscle groups. J. Appl. Physiol. 95:2361–2369, 2003.

    PubMed  CAS  Google Scholar 

  43. Larsson, L., X. Li, and W. R. Frontera. Effects of aging on shortening velocity and myosin isoform composition in single human skeletal muscle cells. Am. J. Physiol. 272:C638–C649, 1997.

    PubMed  CAS  Google Scholar 

  44. Loram, I. D., C. N. Maganaris, and M. Lakie. Paradoxical muscle movement in human standing. J. Physiol. 556:683–689, 2004.

    Article  PubMed  CAS  Google Scholar 

  45. Lundberg, A., O. Svensson, G. Nemeth, and G. Selvik. The axis of rotation of the ankle joint. J. Bone Joint Surg. Br. 71:94–99, 1989.

    PubMed  CAS  Google Scholar 

  46. Maganaris, C. N., V. Baltzopoulos, and A. J. Sargeant. In vivo measurements of the triceps surae complex architecture in man: implications for muscle function. J. Physiol. 512(Pt 2):603–614, 1998.

    Article  PubMed  CAS  Google Scholar 

  47. Maganaris, C. N., V. Baltzopoulos, and A. J. Sargeant. Changes in the tibialis anterior tendon moment arm from rest to maximum isometric dorsiflexion: in vivo observations in man. Clin. Biomech. 14:661–666, 1999.

    Article  CAS  Google Scholar 

  48. Morgan, D. New insights into the behavior of muscle during active lengthening. Biophys. J. 57:209–221, 1990.

    Article  PubMed  CAS  Google Scholar 

  49. Narici, M. V., C. N. Maganaris, N. D. Reeves, and P. Capodaglio. Effect of aging on human muscle architecture. J. Appl. Physiol. 95:2229–2234, 2003.

    PubMed  CAS  Google Scholar 

  50. Ochala, J., W. R. Frontera, D. J. Dorer, J. Van Hoecke, and L. S. Krivickas. Single skeletal muscle fiber elastic and contractile characteristics in young and older men. J. Gerontol. A Biol. Sci. Med. Sci. 62:375–381, 2007.

    Article  PubMed  Google Scholar 

  51. Ochala, J., D. Lambertz, M. Pousson, F. Goubel, and J. V. Hoecke. Changes in mechanical properties of human plantar flexor muscles in ageing. Exp. Gerontol. 39:349–358, 2004.

    Article  PubMed  Google Scholar 

  52. Out, L., T. G. Vrijkotte, A. J. van Soest, and M. F. Bobbert. Influence of the parameters of a human triceps surae muscle model on the isometric torque–angle relationship. J. Biomech. Eng. 118:17–25, 1996.

    Article  PubMed  CAS  Google Scholar 

  53. Rugg, S. G., R. J. Gregor, B. R. Mandelbaum, and L. Chiu. In vivo moment arm calculations at the ankle using magnetic resonance imaging (MRI). J. Biomech. 23:495–501, 1990.

    Article  PubMed  CAS  Google Scholar 

  54. Scovil, C. Y., and J. L. Ronsky. Sensitivity of a Hill-based muscle model to perturbations in model parameters. J. Biomech. 39:2055–2063, 2006.

    Article  PubMed  Google Scholar 

  55. Shao, Q., D. N. Bassett, K. Manal, and T. S. Buchanan. An EMG-driven model to estimate muscle forces and joint moments in stroke patients. Comput. Biol. Med. 39:1083–1088, 2009.

    Article  PubMed  Google Scholar 

  56. Simoneau, E., A. Martin, and J. Van Hoecke. Effects of joint angle and age on ankle dorsi- and plantar-flexor strength. J. Electromyogr. Kinesiol. 17:307–316, 2007.

    Article  PubMed  Google Scholar 

  57. Spoor, C. W., J. L. van Leeuwen, W. J. van der Meulen, and A. Huson. Active force–length relationship of human lower-leg muscles estimated from morphological data: a comparison of geometric muscle models. Eur. J. Morphol. 29:137–160, 1991.

    PubMed  CAS  Google Scholar 

  58. Storn, R., and K. Price. Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012, International Computer Science Institute, 1995.

  59. Thelen, D. G. Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. J. Biomech. Eng. 125:70–77, 2003.

    Article  PubMed  Google Scholar 

  60. Toursel, T., L. Stevens, and Y. Mounier. Evolution of contractile and elastic properties of rat soleus muscle fibres under unloading conditions. Exp. Physiol. 84:93–107, 1999.

    PubMed  CAS  Google Scholar 

  61. Wickiewicz, T. L., R. R. Roy, P. L. Powell, and V. R. Edgerton. Muscle architecture of the human lower limb. Clin. Orthop. Relat. Res. 179:275–283, 1983.

    Article  PubMed  Google Scholar 

  62. Wilkie, D. R. The relation between force and velocity in human muscle. J. Physiol. 110:249–280, 1950.

    Google Scholar 

  63. Winters, J. M. Hill-based muscle models: a systems engineering perspective. In: Multiple Muscle Systems: Biomechanics and Movement Organization, edited by J. M. Winters, and S. L.-Y. Woo. New York: Springer, 1990, pp. 69–93.

    Google Scholar 

  64. Woittiez, R. D., P. A. Huijing, and R. H. Rozendal. Influence of muscle architecture on the length-force diagram. A model and its verification. Pflugers Arch. 397:73–74, 1983.

    Article  PubMed  CAS  Google Scholar 

  65. Zajac, F. E. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17:359–411, 1989.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by NIH grant R03AG026281. We would like to thank Jeff Gagnon for assistance with muscle modeling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Hasson.

Additional information

Associate Editor Thurmon E. Lockhart oversaw the review of this article.

Appendix

Appendix

Each muscle–tendon unit was represented by a two-component Hill-type32 model. This phenomenological lumped-parameter model incorporated a contractile element (CE) in series with an elastic element (SEE). The behavior of the CE was defined by excitation–activation, force–length, and force–velocity relations. The behavior of the SEE was defined by a force–extension relation. Both force–length and force–velocity relations were linearly scaled with activation.

Excitation–Activation Relationship

An exponential characterized the relationship between the excitation input to the muscle model and the activation of the CE.7 Upon receiving an excitatory input μ, the time-course for rising CE activation λ was

$$ \lambda_{i} = \lambda_{i - 1} + \left[ {\mu_{i} \left( {1 - e^{{\left( {{{ - \Updelta t} \mathord{\left/ {\vphantom {{ - \Updelta t} \tau }} \right. \kern-\nulldelimiterspace} \tau }} \right)}} } \right)\left( {\mu_{i} - \lambda_{i - 1} } \right)} \right] $$
(A1)

where i denotes the sample number, Δt is the time-step, and τ is a time constant specifying the rate of activation.

Force–Length Relationship

The isometric force producing potential of the CE (FP) depended on the maximal isometric force capability of the CE (P 0), the activation (λ), and normalized CE length (L CE/L 0). The latter specifies the position on the force length relation, which is defined as an inverted parabola with width coefficient W, such that

$$ FP = P_{0} \lambda \left[ {100\;W\left( {\frac{{L_{\text{CE}} }}{{L_{0} }} - 1} \right)^{2} + 1} \right] $$
(A2)

Force–Velocity Relationship

The force–velocity relation was defined by a rectangular hyperbola based on Hill,33 which has been shown in many experimental preparations.4,13,14 The shape of this relation is determined by the constants a and b, which can be expressed as normalized values a/P 0 and b/L 0.33 If the instantaneous force generated by the CE (P) is less than FP the CE must be shortening, such that

$$ v_{\text{CE}} = - \left[ {\frac{{\left( {FP + a} \right)b}}{{\left( {P + a} \right)}} - b} \right] $$
(A3)

where v CE is the CE velocity. If P is greater than FP, the CE must be lengthening. Therefore, based on FitzHugh22

$$ v_{\text{CE}} = \frac{{b\left[ {\left( {FP \cdot \varepsilon } \right) - FP} \right]\left( {FP - P} \right)}}{{\left( {FP + a} \right)\left[ {P - \left( {FP \cdot \varepsilon } \right)} \right]}} $$
(A4)

where ε is the saturation force for an eccentric contraction (eccentric plateau).

Force–Extension Relationship

The amount of SEE extension for a given force relative to the SEE slack length L S, i.e., the stiffness, was defined by a second-order polynomial. The length of the SEE (L SEE) was given by

$$ L_{\text{SEE}} = \frac{{L_{\text{S}} }}{{2P_{0} \alpha }}\left( {2P_{0} \alpha - P_{0} \beta + \sqrt {P_{0}^{2} \beta^{2} + 4P_{0} \alpha P} } \right) $$
(A5)

where α and β are coefficients defining the shape of the polynomial.

Muscle Model Force Change

The rate of change of muscle force with respect to time is given by

$$ \frac{dP}{dt} = \frac{{\sqrt {P_{0}^{2} \beta^{2} + 4P_{0} \alpha P} }}{{L_{\text{S}} }} \cdot v_{\text{SEE}} $$
(A6)

where v SEE is the velocity of the SEE, given by

$$ v_{\text{SEE}} = v_{\text{MT}} - v_{\text{CE}} $$
(A7)

where v MT is the velocity of the musculotendon complex. During model simulation, this force change was integrated to give the muscle force at the next time step.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasson, C.J., Caldwell, G.E. Effects of Age on Mechanical Properties of Dorsiflexor and Plantarflexor Muscles. Ann Biomed Eng 40, 1088–1101 (2012). https://doi.org/10.1007/s10439-011-0481-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0481-4

Keywords

Navigation