Skip to main content

Advertisement

Log in

Selective muscle contraction during plantarflexion is incompatible with maximal voluntary torque assessment

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Objective

Large variations in maximal voluntary torque are reported in the literature during isometric plantarflexion contractions. We propose that these differences, which could reach 40 % across similar studies, could be explained by differences in the instructions provided, and notably by instructions as to favoring or not multi-joint contractions.

Method

Sixteen participants were placed on an isokinetic ergometer in 3 different positions, supine, prone and seated, with the ankle in the neutral position, and instructed to create maximal force on the footplate by conforming to instructions that favored either isolated (ISOL) or multi-joint (ALL) isometric contractions. Torque, foot kinematics and the electromyographic activity of seven muscles of the lower limb have been recorded.

Results

Joint torques were greater in ALL compared to ISOL (p < 0.05) with gains of 43.5 (25.4–170.6) %, 42.5 (1.4–194.6) % and 15.3 (9.3–71.9) % in the supine, prone and seated position, respectively [values are given as median (range)]. The results of this study suggested that forces created by muscles that do not span over the ankle joint significantly influenced the measured joint torque. Nevertheless, the observed gains in torque were associated with greater plantarflexor muscles activation, showing that the ISOL condition may have induced a form of inhibition of these muscles.

Conclusions

The results of this study suggest that using isolated contractions, hence constrained testing protocols, cannot provide optimal conditions for MVC testing, notably for plantarflexor muscles, which seem to be extremely sensitive to such constrained conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ALL:

Multi-joint contractions condition

ANOVA:

Analysis of variance

CR:

Center of rotation

EMG:

Electromyographic signal

EMGmax :

Maximal electromyographic (EMG) value obtained over all conditions

GM:

Gastrocnemius medialis

G max :

Gluteus maximus

ISOL:

Isolated contractions condition

MVC:

Maximal voluntary contraction

RF:

Rectus femoris

SCoRE:

Symmetrical centre of rotation estimation method

SCS:

Segment coordinate system

SD:

Standard deviation

Sol:

Soleus

ST:

Semi tendinosus

TA:

Tibialis anterior

VL:

Vastus lateralis

References

  • Arampatzis A, Karamanidis K, De Monte G, Stafilidis S, Morey-Klapsing G, Brüggemann G-P (2004) Differences between measured and resultant joint moments during voluntary and artificially elicited isometric knee extension contractions. Clin Biomech 19(3):277–283

    Article  Google Scholar 

  • Arampatzis A, De Monte G, Morey-Klapsing G (2007) Effect of contraction form and contraction velocity on the differences between resultant and measured ankle joint moments. J Biomech 40(7):1622–1628

    Article  PubMed  Google Scholar 

  • Barry B, Riley Z, Pascoe M, Enoka R (2008) A spinal pathway between synergists can modulate activity in human elbow flexor muscles. Exp Brain Res 190(3):347–359

    Article  PubMed Central  PubMed  Google Scholar 

  • Burke S (2001) Missing values, outliers, robust statistics & non-parametric methods. LC-GC Europe Online Supplement, Statistics & Data Analysis 2:19–24

  • Chatterjee S, Hadi AS (1986) Influential observations, high leverage points, and outliers in linear regression. Stat Sci 1(3):379–393

    Article  Google Scholar 

  • Cherry EA, Brown LE, Coburn JW, Noffal GJ (2010) Effect of remote voluntary contractions on knee extensor torque and rate of velocity development. J Strength Cond Res 24(9):2564–2569

    Article  PubMed  Google Scholar 

  • Cresswell AG, Löscher W, Thorstensson A (1995) Influence of gastrocnemius muscle length on triceps surae torque development and electromyographic activity in man. Exp Brain Res 105(2):283–290

    Article  CAS  PubMed  Google Scholar 

  • Danneskiold-Samsøe B, Bartels E, Bülow P, Lund H, Stockmarr A, Holm C, Wätjen I, Appleyard M, Bliddal H (2009) Isokinetic and isometric muscle strength in a healthy population with special reference to age and gender. Acta Physiol 197(s673):1–68

    Article  Google Scholar 

  • De Ruiter CJ, Hoddenbach JG, Huurnink A, De Haan A (2008) Relative torque contribution of vastus medialis muscle at different knee angles. Acta Physiol 194(3):223–237

    Article  Google Scholar 

  • Deslandes S, Mariot J-P, Serveto S (2008) Offset of rotation centers creates a bias in isokinetics: a virtual model including stiffness or friction. J Biomech 41(10):2112–2120

    Article  PubMed  Google Scholar 

  • Devanne H, Cohen LG, Kouchtir-Devanne N, Capaday C (2002) Integrated motor cortical control of task-related muscles during pointing in humans. J Neurophysiol 87(6):3006–3017

    PubMed  Google Scholar 

  • Dimitrijevic MR, McKay WB, Sarjanovic I, Sherwood AM, Svirtlit L, Vrbovà G (1992) Co-activation of ipsi- and contralateral muscle groups during contraction of ankle dorsiflexors. J Neurol Sci 109(1):49–55

    Article  CAS  PubMed  Google Scholar 

  • Drouin JM, Valovich-mcLeod TC, Shultz SJ, Gansneder BM, Perrin DH (2004) Reliability and validity of the Biodex system 3 pro isokinetic dynamometer velocity, torque and position measurements. Eur J Appl Physiol 91(1):22–29

    Article  PubMed  Google Scholar 

  • Ebben WP (2006) A brief review of concurrent activation potentiation: theoretical and practical constructs. J Strength Cond Res 20(4):985–991

    PubMed  Google Scholar 

  • Ebben WP, Flanagan EP, Jensen RL (2008a) Jaw clenching results in concurrent activation potentiation during the countermovement jump. J Strength Cond Res 22(6):1850–1854

    Article  PubMed  Google Scholar 

  • Ebben WP, Leigh DH, Geiser CF (2008b) The effect of remote voluntary contractions on knee extensor torque. Med Sci Sports Exerc 40(10):1805–1809

    Article  PubMed  Google Scholar 

  • Ebben WP, Petushek EJ, Fauth ML, Garceau LR (2010) EMG analysis of concurrent activation potentiation. Med Sci Sports Exerc 42(3):556–562

    Article  PubMed  Google Scholar 

  • Ehrig RM, Taylor WR, Duda GN, Heller MO (2006) A survey of formal methods for determining the centre of rotation of ball joints. J Biomech 39(15):2798–2809

    Article  PubMed  Google Scholar 

  • Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81(4):1725–1789

    CAS  PubMed  Google Scholar 

  • Hahn D, Olvermann M, Richtberg J, Seiberl W, Schwirtz A (2011) Knee and ankle joint torque–angle relationships of multi-joint leg extension. J Biomech 44(11):2059–2065

    Article  PubMed  Google Scholar 

  • Herbert R, Dean C, Gandevia S (1998) Effects of real and imagined training on voluntary muscle activation during maximal isometric contractions. Acta Physiol Scand 163(4):361–368

    Article  CAS  PubMed  Google Scholar 

  • Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G (2000) Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10(5):361–374

    Article  CAS  PubMed  Google Scholar 

  • Herzog W (1988) The relation between the resultant moments at a joint and the moments measured by an isokinetic dynamometer. J Biomech 21(1):5–12

    Article  CAS  PubMed  Google Scholar 

  • Hicks J (1953) The mechanics of the foot: I. The joints. J Anat 87(Pt 4):345

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horak FB, Shupert CL, Mirka A (1989) Components of postural dyscontrol in the elderly: a review. Neurobiol Aging 10(6):727–738

    Article  CAS  PubMed  Google Scholar 

  • Kaufman KR, An K-N, Chao E (1995) A comparison of intersegmental joint dynamics to isokinetic dynamometer measurements. J Biomech 28(10):1243–1256

    Article  CAS  PubMed  Google Scholar 

  • Kennedy P, Cresswell A (2001) The effect of muscle length on motor-unit recruitment during isometric plantar flexion in humans. Exp Brain Res 137(1):58–64

    Article  CAS  PubMed  Google Scholar 

  • Kent-Braun JA, Ng AV, Doyle JW, Towse TF (2002) Human skeletal muscle responses vary with age and gender during fatigue due to incremental isometric exercise. J Appl Physiol 93(5):1813–1823

    CAS  PubMed  Google Scholar 

  • Klass M, Baudry S, Duchateau J (2008) Age-related decline in rate of torque development is accompanied by lower maximal motor unit discharge frequency during fast contractions. J Appl Physiol 104(3):739–746

    Article  PubMed  Google Scholar 

  • Kouchtir-Devanne N, Capaday C, Cassim Fo, Derambure P, Devanne H (2012) Task-dependent changes of motor cortical network excitability during precision grip compared to isolated finger contraction. J Neurophysiol 107(5):1522–1529

    Article  PubMed  Google Scholar 

  • Lawrence JH, De Luca C (1983) Myoelectric signal versus force relationship in different human muscles. J Appl Physiol 54(6):1653–1659

    CAS  PubMed  Google Scholar 

  • Lundberg A, Svensson O, Nemeth G, Selvik G (1989) The axis of rotation of the ankle joint. J Bone Joint Surg Br Vol 71(1):94–99

    CAS  Google Scholar 

  • Maffiuletti NA, Pensini M, Martin A (2002) Activation of human plantar flexor muscles increases after electromyostimulation training. J Appl Physiol 92(4):1383–1392

    PubMed  Google Scholar 

  • Maganaris CN (2003) Force-length characteristics of the in vivo human gastrocnemius muscle. Clin Anat 16(3):215–223

    Article  PubMed  Google Scholar 

  • Maxwell SE (1980) Pairwise multiple comparisons in repeated measures designs. J Educ Behav Stat 5(3):269–287

    Article  Google Scholar 

  • McGraw KO, Wong S (1996) Forming inferences about some intraclass correlation coefficients. Psychol Methods 1(1):30

    Article  Google Scholar 

  • McNeil CJ, Vandervoort AA, Rice CL (2007) Peripheral impairments cause a progressive age-related loss of strength and velocity-dependent power in the dorsiflexors. J Appl Physiol 102(5):1962–1968

    Article  PubMed  Google Scholar 

  • Moraux A, Canal A, Ollivier G, Ledoux I, Doppler V, Payan C, Hogrel J-Y (2013) Ankle dorsi-and plantar-flexion torques measured by dynamometry in healthy subjects from 5 to 80 years. BMC Musculoskelet Disord 14(1):104

    Article  PubMed Central  PubMed  Google Scholar 

  • Perry J, Bekey GA (1981) EMG-force relationships in skeletal muscle. Crit Rev Biomed Eng 7(1):1–22

    CAS  PubMed  Google Scholar 

  • Ramos MU, Knapik J (1978) Instrumentation and techniques for the measurement of muscular strength and endurance in the human body. DTIC Document

  • Sasaki Y, Ueno T, Taniguchi H, Ohyama T (1998) Effect of teeth clenching on isometric and isokinetic strength of ankle plantar flexion. J Med Dental Sci 45(1):29

    CAS  Google Scholar 

  • Shiavi R, Frigo C, Pedotti A (1998) Electromyographic signals during gait: criteria for envelope filtering and number of strides. Med Biol Eng Comput 36(2):171–178

    Article  CAS  PubMed  Google Scholar 

  • Shield A, Zhou S (2004) Assessing voluntary muscle activation with the twitch interpolation technique. Sports Med 34(4):253–267

    Article  PubMed  Google Scholar 

  • Sidaway B, Trzaska A (2005) Can mental practice increase ankle dorsiflexor torque? Phys Ther 85(10):1053–1060

    PubMed  Google Scholar 

  • Simoneau E, Martin A, Van Hoecke J (2007) Effects of joint angle and age on ankle dorsi-and plantar-flexor strength. J Electromyogr Kinesiol 17(3):307–316

    Article  PubMed  Google Scholar 

  • Simoneau EM, Billot M, Martin A, Van Hoecke J (2009) Antagonist mechanical contribution to resultant maximal torque at the ankle joint in young and older men. J Electromyogr Kinesiol 19(2):e123–e131

    Article  PubMed  Google Scholar 

  • Sleivert GG, Wenger HA (1994) Reliability of measuring isometric and isokinetic peak torque, rate of torque development, integrated electromyography, and tibial nerve conduction velocity. Arch Phys Med Rehabil 75(12):1315–1321

    CAS  PubMed  Google Scholar 

  • Todd G, Gorman RB, Gandevia SC (2004) Measurement and reproducibility of strength and voluntary activation of lower limb muscles. Muscle Nerve 29(6):834–842

    Article  PubMed  Google Scholar 

  • Todor JI, Lazarus J-AC (1986) Exertion level and the intensity of associated movements. Dev Med Child Neurol 28(2):205–212

    Article  CAS  PubMed  Google Scholar 

  • Van Cutsem M, Duchateau J, Hainaut K (1998) Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J Physiol 513(1):295–305

    Article  PubMed Central  PubMed  Google Scholar 

  • Webber SC, Porter MM (2010) Reliability of ankle isometric, isotonic, and isokinetic strength and power testing in older women. Phys Ther 90(8):1165–1175

    Article  PubMed  Google Scholar 

  • Winter DA (1990) Biomechanics and motor control of human movement. Wiley, New York

    Google Scholar 

  • Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D’Lima DD, Cristofolini L, Witte H (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. J Biomech 35(4):543–548

    Article  PubMed  Google Scholar 

  • Zijdewind I, Toering ST, Bessem B, van der Laan O, Diercks RL (2003) Effects of imagery motor training on torque production of ankle plantar flexor muscles. Muscle Nerve 28(2):168–173

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Watier.

Additional information

Communicated by Nicolas Place.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turpin, N.A., Costes, A., Villeger, D. et al. Selective muscle contraction during plantarflexion is incompatible with maximal voluntary torque assessment. Eur J Appl Physiol 114, 1667–1677 (2014). https://doi.org/10.1007/s00421-014-2900-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-2900-3

Keywords

Navigation