Skip to main content
Log in

Fundamentals of multiframe particle image velocimetry (PIV)

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A sophisticated strategy for the evaluation of time-resolved PIV image sequences is presented which takes the temporal variation of the particle image pattern into account. The primary aim of the method is to increase the accuracy and dynamic range by locally adopting the particle image displacement for each interrogation window to overcome the largest drawback of PIV. This is required in order to resolve flow phenomena which have so far remained inaccessible. The method locally optimizes the temporal separation between the particle image pairs by taking first and second order effects into account. The validation of the evaluation method is performed with synthetically generated particle image sequences based on the solution of a direct numerical simulation. In addition, the performance of the evaluation approach is demonstrated by means of a real image sequence measured with a time-resolved PIV system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Adrian RJ (1997) Dynamic ranges of velocity and spatial resolution of particle image velocimetry. Meas Sci Technol 8:1393–1398

    Article  Google Scholar 

  • Hain R, Kähler CJ, Tropea C (2007) Comparison of CCD, CMOS and intensified cameras. Exp Fluids. doi:10.1007/s00348-006-0247-1

  • Kähler CJ (2004a) The significance of coherent flow structures for the turbulent mixing in wall-bounded flows. PhD Thesis, Georg-August-Universität of Göttingen. http://www.webdoc.sub.gwdg.de/diss/2004/kaehler/kaehler.pdf

  • Kähler CJ (2004b) Significance of dynamic evaluation of time resolved PIV images for complex flow investigations. In: The international workshop on dynamic PIV, Takeda Hall, The University of Tokio, March 23

  • Kähler CJ, Kompenhans J (2000) Fundamentals of multiple plane stereo particle image velocimetry. Exp Fluids 29:S70–S77

    Article  Google Scholar 

  • Kähler CJ, Scholz U, Ortmanns J (2006) Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long distance micro-PIV. Exp Fluids 41:327–341

    Article  Google Scholar 

  • Keane RD, Adrian RJ (1990) Optimization of particle image velocimeters. Part 1: Double pulsed systems. Meas Sci Technol 1:1202–1215

    Article  Google Scholar 

  • Keane RD, Adrian RJ (1992) Theory of cross-correlation analysis of PIV images. Appl Sci Res 49:191–215

    Article  Google Scholar 

  • Lecordier B, Westerweel J (2004) The EUROPIV synthetic image generator (S.I.G.). In: Particle image velocimetry: recent improvements. Proceedings of the EUROPIV 2 workshop held in Zaragoza, Spain, March 31–April 1, 2003. Springer, Heidelberg

  • Marxen O, Rist U, Wagner S (2004) The effect of spanwise-modulated disturbances on transition in a 2-D separated boundary layer. AIAA J 42:937–944

    Article  Google Scholar 

  • Ol MV, Hanff E, McAuliffe B, Scholz U, Kähler C (2005) Comparison of laminar separation bubble measurements on a low Reynolds number airfoil in three facilities. In: AIAA paper 2005-5149, 35th AIAA fluid dynamics conference and exhibit, Toronto, June 6–9

  • Pereira F, Ciarravano A, Romano GP, Di Felice F (2004) Adaptive multi-frame PIV. In: 12th international symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal, July 12–15

  • Stanislas M, Okamoto K, Kähler CJ (2003) Main results of the first international PIV Challenge. Meas Sci Technol 14:53–89

    Article  Google Scholar 

  • Stanislas M, Okamoto K, Kähler CJ, Westerweel J (2005) Main results of the second international PIV Challenge. Exp Fluids 39:170–191

    Article  Google Scholar 

  • Westerweel J (2004) Principles of PIV technique III. Spatial correlation analysis. Application of particle image velocimetry—theory and practice. DLR, Göttingen, Germany, March 1–5

  • Westerweel J, Geelhoed PF, Lindken R (2004) Single-pixel resolution ensemble correlation for micro-PIV applications. Exp Fluids 37:375–384

    Article  Google Scholar 

Download references

Acknowledgments

This research has been supported by the German Research Foundation (DFG) in the priority program 1147 “Bildgebende Messverfahren für die Strömungsanalyse”. The authors would like to thank Dr. Rist from the University of Stuttgart for providing the DNS data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hain, R., Kähler, C.J. Fundamentals of multiframe particle image velocimetry (PIV). Exp Fluids 42, 575–587 (2007). https://doi.org/10.1007/s00348-007-0266-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-007-0266-6

Keywords

Navigation