Skip to main content
Log in

Semi-automatic Method for Ca2+ Imaging Data Analysis of Maturing Human Embryonic Stem Cells-Derived Retinal Pigment Epithelium

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Ca2+ is a second messenger controlling vital cellular processes, including cell maturation. Changes in Ca2+ signaling during maturation of human embryonic stem cell-derived retinal pigment epithelial cells (hESC-RPE) have not been assessed previously. The aim of this study was to investigate maturation-dependent changes in transient intracellular Ca2+ ([Ca2+] i ) increases in hESC-RPE. For this, we developed image analysis tools to evaluate cell-specific Ca2+ signals from the entire field of view. Spontaneous and mechanically induced transient [Ca2+] i increases (STIs and MITIs) were analyzed in hESC-RPEs cultured for 9 or 28 days, altogether from more than 80,000 cells. Both cultures showed STIs: the longer culture time resulted in twofold increase of amount of cells with STIs. Mechanical stimulation induced intercellular Ca2+ waves in cells from both time points, but longer culture time reduced Ca2+ wave spreading. Depletion of intracellular Ca2+ stores decreased cell fraction with STIs and MITIs at both time points, and absence of extracellular Ca2+ had similar effect on cells with STIs. To conclude, hESC-RPE cells undergo significant Ca2+ signaling re-arrangements during a short maturation period increasing cell fraction with STIs, while decreasing coordinated cell response to mechanical stimulation. This knowledge and proposed analysis tools can be used for assessment of hESC-RPE maturation in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

STI:

Spontaneous transient [Ca2+] i increase

MITI:

Mechanically induced transient [Ca2+] i increase

References

  1. Abu Khamidakh, A. E., K. Juuti-Uusitalo, K. Larsson, H. Skottman, and J. Hyttinen. Intercellular Ca2+ wave propagation in human retinal pigment epithelium cells induced by mechanical stimulation. Exp Eye Res. 108:129–139, 2013.

    Article  CAS  PubMed  Google Scholar 

  2. Berridge, M., P. Lipp, and M. Bootman. The versatility and universality of calcium signaling. Nat. Rev. Mol. Cell Biol. 1:11–21, 2000.

    Article  CAS  PubMed  Google Scholar 

  3. Carr, A.-J. F., M. J. K. Smart, C. M. Ramsden, M. B. Powner, L. da Cruz, and P. J. Coffey. Development of human embryonic stem cell therapies for age-related macular degeneration. Trends NeuroSci. 36:385–395, 2013.

    Article  CAS  PubMed  Google Scholar 

  4. Catsicas, M., V. Bonness, D. Becker, and P. Mobbs. Spontaneous Ca2+ transients and their transmission in the developing chick retina. Curr. Biol. 8:283–288, 1998.

    Article  CAS  PubMed  Google Scholar 

  5. Charles, A. C., S. K. Kodali, and R. F. Tyndale. Intercellular calcium waves in neurons. Mol. Cell. Neurosci. 7:337–353, 1996.

    Article  CAS  PubMed  Google Scholar 

  6. Churchill, G. C., M. M. Atkinson, and C. F. Louis. Mechanical stimulation initiates cell-to-cell calcium signaling in ovine lens epithelial cells. J. Cell Sci. 109:355–365, 1996.

    CAS  PubMed  Google Scholar 

  7. D’hondt, C., R. Ponsaerts, S. P. Srinivas, J. Vereecke, and B. Himpens. Thrombin inhibits intercellular calcium wave propagation in corneal endothelial cells by modulation of hemichannels and gap junctions. Invest. Ophthalmol. Vis. Sci. 48:120–133, 2007.

    Article  PubMed  Google Scholar 

  8. Dabertrand, F., J. Mironneau, N. Macrez, and J. Morel. Full length ryanodine receptor subtype 3 encodes spontaneous calcium oscillations in native duodenal smooth muscle cells. Cell Calcium 44:180–189, 2008.

    Article  CAS  PubMed  Google Scholar 

  9. D’Souza, S. J. A., A. Pajak, K. Balazsi, and L. Dagnino. Ca2+ and BMP-6 signaling regulate E2F during epidermal keratinocyte differentiation. J. Biol. Chem. 276:23531–23538, 2001.

    Article  PubMed  Google Scholar 

  10. El-Fouly, M. H., J. E. Trosko, and C. Chang. Scrape-loading and dye transfer: a rapid and simple technique to study gap junctional intercellular communication. Exp. Cell Res. 168:422–430, 1987.

    Article  CAS  PubMed  Google Scholar 

  11. Federici, F., L. Dupuy, L. Laplaze, M. Heisler, and J. Haseloff. Integrated genetic and computation methods for in planta cytometry. Nat. Methods 9:483–485, 2012.

    Article  CAS  PubMed  Google Scholar 

  12. Frame, M. K., and A. W. de Feijter. Propagation of mechanically induced intercellular calcium waves via gap junctions and ATP receptors in rat liver epithelial cells. Exp. Cell Res. 230:197–207, 1997.

    Article  CAS  PubMed  Google Scholar 

  13. Gomes, P., M. Malfait, B. Himpens, and J. Vereecke. Intercellular Ca2+-transient propagation in normal and high glucose solutions in rat retinal epithelial (RPE-J) cells during mechanical stimulation. Cell Calcium 34:185–192, 2003.

    Article  CAS  PubMed  Google Scholar 

  14. Guo, Y., C. Martinez-Williams, K. A. Gilbert, and D. E. Rannels. Inhibition of gap junction communication in alveolar epithelial cells by 18α-glycyrrhetinic acid. Am. J. Physiol. Lung Cell Mol. Physiol. 276:1018–1026, 1999.

    Google Scholar 

  15. Himpens, B., P. Stalmans, P. Gomez, M. Malfait, and J. Vereecke. Intra- and intercellular Ca2+ signaling in retinal pigment epithelial cells during mechanical stimulation. FASEB J. 13:63–68, 1999.

    Google Scholar 

  16. Käpylä, E., A. Sorkio, S. Teymouri, K. Lahtonen, L. Vuori, M. Valden, H. Skottman, M. Kellomäki, and K. Juuti-Uusitalo. Ormocomp-modified glass increases collagen binding and promotes the adherence and maturation of human embryonic stem cell-derived retinal pigment epithelial cells. Langmuir 30:14555–14565, 2014.

    Article  PubMed  Google Scholar 

  17. Lukyanenko, V., and S. Györke. Ca2+ sparks and Ca2+ waves in saponin-permeabilized rat ventricular myocytes. J. Physiol. (Lond.) 521:575–585, 1999.

    Article  CAS  Google Scholar 

  18. Mathiesen, C., A. Brazhe, K. Thomsen, and M. Lauritzen. Spontaneous calcium waves in Bergman glia increase with age and hypoxia and may reduce tissue oxygen. J. Cereb. Blood Flow Metab. 33:161–169, 2013.

    Article  CAS  PubMed  Google Scholar 

  19. Mukamel, E. A., A. Nimmerjahn, and M. J. Schnitzer. Automated analysis of cellular signals from large-scale calcium imaging data. Neuron 63:747–760, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pearson, R. A., M. Catsicas, D. L. Becker, P. Bayley, N. L. Lüneborg, and P. Mobbs. Ca2+ signalling and gap junction coupling within and between pigment epithelium and neural retina in the developing chick. Eur. J. Neurosci. 19:2435–2445, 2004.

    Article  PubMed  Google Scholar 

  21. Pearson, R. A., N. Dale, E. Llaudet, and P. Mobbs. ATP released via gap junction hemichannels from the pigment epithelium regulates neural retinal progenitor proliferation. Neuron 46:731–744, 2005.

    Article  CAS  PubMed  Google Scholar 

  22. Resende, R. R., A. S. Alves, L. R. G. Britto, and H. Ulrich. Role of acetylcholine receptors in proliferation and differentiation of P19 embryonal carcinoma cells. Exp. Cell Res. 314:1429–1443, 2008.

    Article  CAS  PubMed  Google Scholar 

  23. Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9:676–682, 2012.

    Article  CAS  PubMed  Google Scholar 

  24. Sekiguchi-Tonosaki, M., M. Obata, A. Haruki, T. Himi, and J. Kosaka. Acetylcholine induces Ca2+ signaling in chicken retinal pigmented epithelial cells during dedifferentiation. Am. J. Physiol. Cell Physiol. 296:1195–1206, 2009.

    Article  Google Scholar 

  25. Skottman, H. Derivation and characterization of three new human embryonic stem cell lines in Finland. In Vitro Cell. Dev. Biol. Anim. 46(3–4):206–209, 2010.

    Article  PubMed  Google Scholar 

  26. Sorkio, A., P. J. Porter, K. Juuti-Uusitalo, B. Meenan, H. Skottman, and G. Burke. Surface modified biodegradable electrospun membranes as a carrier for human embryonic stem cell derived retinal pigment epithelial cells. Tissue Eng. Part A 21:2301–2314, 2015.

    Article  CAS  PubMed  Google Scholar 

  27. Sun, S., Y. Liu, S. Lipsky, and M. Cho. Physical manipulation of calcium oscillations facilitates osteodifferentiation of human mesenchymal stem cells. FASEB J. 21:1472–1480, 2007.

    Article  CAS  PubMed  Google Scholar 

  28. Thastrup, O., P. J. Cullen, B. K. Drøbak, M. R. Hanley, and A. P. Dawson. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc. Natl. Acad. Sci. 87:2466–2470, 1990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tonelli, F. P., A. Santos, D. Gomes, S. da Silva, K. Gomes, L. Ladeira, and R. Resende. Stem cells and calcium signaling. Adv. Exp. Med. Biol. 740:891–916, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vaajasaari, H., T. Ilmarinen, K. Juuti-Uusitalo, K. Rajala, N. Onnela, S. Narkilahti, R. Suuronen, J. Hyttinen, H. Uusitalo, and H. Skottman. Toward the defined and xeno-free differentiation of functional human pluripotent stem cell-derived retinal pigment epithelial cells. Mol. Vis. 17:558–575, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Weber, P. A., H. Chang, K. E. Spaeth, J. M. Nitsche, and B. J. Nicholson. The permeability of gap junction channels to probes of different size is dependent on connexin composition and permeant-pore affinities. Biophys. J. 87:958–973, 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wong, L. C., B. Lu, K. W. Tan, and M. Fivaz. Fully-automated image processing software to analyze calcium traces in populations of single cells. Cell Calcium 48:270–274, 2010.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Finnish Funding Agency for Technology and Innovation, Health Research Council of the Academy of Finland (Grant Numbers 252225, 218050 and 137801) and Tampere University of Technology President’s Doctoral Program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Outi Melin, Outi Heikkilä and Hanna Pekkanen are thanked for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amna E. Abu Khamidakh or Jari Hyttinen.

Additional information

Associate Editor Michael Gower oversaw the review of this article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu Khamidakh, A.E., dos Santos, F.C., Skottman, H. et al. Semi-automatic Method for Ca2+ Imaging Data Analysis of Maturing Human Embryonic Stem Cells-Derived Retinal Pigment Epithelium. Ann Biomed Eng 44, 3408–3420 (2016). https://doi.org/10.1007/s10439-016-1656-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1656-9

Keywords

Navigation