Skip to main content

Stem Cells and Calcium Signaling

  • Chapter
  • First Online:
Calcium Signaling

Abstract

The increasing interest in stem cell research is linked to the promise of developing treatments for many lifethreatening, debilitating diseases, and for cell replacement therapies. However, performing these therapeutic innovations with safety will only be possible when an accurate knowledge about the molecular signals that promote the desired cell fate is reached. Among these signals are transient changes in intracellular Ca2+ concentration [Ca2+]i. Acting as an intracellular messenger, Ca2+ has a key role in cell signaling pathways in various differentiation stages of stem cells. The aim of this chapter is to present a broad overview of various moments in which Ca2+-mediated signaling is essential for the maintenance of stem cells and for promoting their development and differentiation, also focusing on their therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

7TMS:

7-transmembrane segment receptor

Akt:

Protein kinase B

AM:

Amplitude modulation

BDNF:

Brain-derived neurotrophic factor

BMP:

Bone morphogenetic protein

BMP4:

Bone morphogenetic protein 4

CaMK:

Calcium/calmodulin dependent kinase protein

CaR:

Calcium sensing receptor

cAMP:

Cyclic adenosine monophosphate

cGMP:

Cyclic guanosine monophosphate

CREB:

Binding element responsive to cAMP

DAG:

Diacylglycerol

DKK1:

Dickkopf 1

ECC:

Embryonic carcimona cells

ECM:

Extracellular matrix

ELK:

Eph-related tyrosine kinase

ER:

Endoplasmatic reticulum

ERK:

Extracellular-signal-regulated kinase

ESC:

Embryonic stem cells

ExEn:

Extraembryonic endoderm

FGF:

Fibroblast growth factor

FGF1:

Fibroblast growth factor 1

FGF2:

Fibroblast growth factor 2

FL:

Fluorescein

FM:

Frequency modulation

FZD:

Frizzled

GFP:

Green fluorescent protein

GPCR:

G protein-coupled receptor

hESC:

Human embryonic stem cell

hHSC:

Human hematopoietic stem cell

hMSC:

Human mesenchymal stem cell

HSC:

Hematopoietic stem cell

ICM:

Inner cell mass

iMEF:

Mitotically inactivated embryonic fibroblast

IP3:

Inositol 1,4,5-triphosphate

IP3Rs:

Inositol 1,4,5-triphosphate receptors

iPSC:

Induced pluripotent stem cell

IVF:

in vitro fertilized

JAK:

Janus kinase

Klf4:

Gut-enriched Krüppel-like factor

LIF:

Leukemia inhibitory factor

LPA:

Lysophosphatidic acid

MKK3:

Mitogen-activated Protein Kinase Kinase 3

MAP:

Microtubule-associated protein

MAP1B:

Protein association with the microtubule 1B

MAP2:

Protein associated with type 2 microtubule

MAPK:

Pathways of mitogen-activated protein kinases

MAPKK:

MAP kinase kinase

mESC:

Mouse embryonic stem cell

NAAD:

Nicotinic Acid Adenine Dinucleotide

NANOG:

Nanog homeobox

NFAT:

Nuclear factors of activated T-cells

NFκB:

Nuclear factor κBl

NSC:

Neural stem cell

OAP:

Oct/octamer-associated protein

OCT-4:

Octamer-binding transcription factor 4

PI3K:

Phosphoinositide Kinase-3

PIP2:

Phosphatidylinositol 4,5-biphosphate

PKA:

Protein kinase A

PKC:

Protein kinase C

PLC:

Phospholipase C

PSC:

Pluripotent stem cell

Ras:

Rat sarcoma similar to G protein GTPase

Rcn2:

Reticulocalbin-2

RyR:

Ryanodine receptors

ROC:

Receptor-operated channels

RTKs:

Receptors tyrosine kinase

Stk40:

Serine/threonine kinase 40

SOX2:

Sex determining region Y box 2

SR:

Sarcoplasmatic reticulum

SOC:

Store-operated channels

SSC:

Somatic stem cell

STAT3:

Signal transducer and activator of transcription 3

Stk40:

Serine/threonine kinase 40

TBX3:

T-box transcription factor

Tc:

Tetracycline

TGF-β:

Transforming growth factor-β

TSC:

Tumor stem cell

VOCC:

Voltage-operated calcium channels

References

  1. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  PubMed  CAS  Google Scholar 

  2. Kawano S, Shoji S, Ichinose S, Yamagata K, Tagami M, Hiraoka M (2002) Characterization of Ca(2+) signaling pathways in human mesenchymal stem cells. Cell Calcium 32:165–174

    Article  PubMed  CAS  Google Scholar 

  3. Kawano S, Otsu K, Shoji S, Yamagata K, Hiraoka M (2003) Ca(2+) oscillations regulated by Na(+)-Ca(2+) exchanger and plasma membrane Ca(2+) pump induce fluctuations of membrane currents and potentials in human mesenchymal stem cells. Cell Calcium 34:145–156

    Article  PubMed  CAS  Google Scholar 

  4. Li GR, Sun H, Deng X, Lau CP (2005) Characterization of ionic currents in human mesenchymal stem cells from bone marrow. Stem Cells 23:371–382

    Article  PubMed  CAS  Google Scholar 

  5. Heubach JF, Graf EM, Leutheuser J, Bock M, Balana B, Zahanich I, Christ T, Boxberger S, Wettwer E, Ravens U (2004) Electrophysiological properties of human mesenchymal stem cells. J Physiol 554:659–672

    Article  PubMed  CAS  Google Scholar 

  6. Ameen C, Strehl R, Bjorquist P, Lindahl A, Hyllner J, Sartipy P (2008) Human embryonic stem cells: current technologies and emerging industrial applications. Crit Rev Oncol Hematol 65:54–80

    Article  PubMed  Google Scholar 

  7. Friel R, van der Sar S, Mee PJ (2005) Embryonic stem cells: understanding their history, cell biology and signalling. Adv Drug Deliv Rev 57:1894–1903

    Article  PubMed  CAS  Google Scholar 

  8. Callihan P, Mumaw J, Machacek DW, Stice SL, Hooks SB (2011) Regulation of stem cell pluripotency and differentiation by G protein coupled receptors. Pharmacol Ther 129:290–306

    Article  PubMed  CAS  Google Scholar 

  9. Wakayama T, Tabar V, Rodriguez I, Perry AC, Studer L, Mombaerts P (2001) Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292:740–743

    Article  PubMed  CAS  Google Scholar 

  10. Kane NM, Xiao Q, Baker AH, Luo Z, Xu Q, Emanueli C (2011) Pluripotent stem cell differentiation into vascular cells: a novel technology with promises for vascular re(generation). Pharmacol Ther 129:29–49

    Article  PubMed  CAS  Google Scholar 

  11. Takayama N, Nishikii H, Usui J, Tsukui H, Sawaguchi A, Hiroyama T, Eto K, Nakauchi H (2008) Generation of functional platelets from human embryonic stem cells in vitro via ES-sacs, VEGF-promoted structures that concentrate hematopoietic progenitors. Blood 111:5298–5306

    Article  PubMed  CAS  Google Scholar 

  12. Niwa H (2007) How is pluripotency determined and maintained? Development 134:635–646

    Article  PubMed  CAS  Google Scholar 

  13. Denker HW (2006) Potentiality of embryonic stem cells: an ethical problem even with alternative stem cell sources. J Med Ethics 32:665–671

    Article  PubMed  Google Scholar 

  14. Leandri RD, Archilla C, Bui LC, Peynot N, Liu Z, Cabau C, Chastellier A, Renard JP, Duranthon V (2009) Revealing the dynamics of gene expression during embryonic genome activation and first differentiation in the rabbit embryo with a dedicated array screening. Physiol Genomics 36:98–113

    PubMed  CAS  Google Scholar 

  15. Suwinska A, Tarkowski AK, Ciemerych MA (2010) Pluripotency of bank vole embryonic cells depends on FGF2 and activin A signaling pathways. Int J Dev Biol 54:113–124

    Article  PubMed  CAS  Google Scholar 

  16. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  17. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  PubMed  CAS  Google Scholar 

  18. Stadtfeld M, Maherali N, Breault DT, Hochedlinger K (2008) Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2:230–240

    Article  PubMed  CAS  Google Scholar 

  19. Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hamalainen R, Cowling R, Wang W, Liu P, Gertsenstein M, Kaji K, Sung HK, Nagy A (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–770

    Article  PubMed  CAS  Google Scholar 

  20. Kim JB, Sebastiano V, Wu G, Arauzo-Bravo MJ, Sasse P, Gentile L, Ko K, Ruau D, Ehrich M, van den Boom D, Meyer J, Hubner K, Bernemann C, Ortmeier C, Zenke M, Fleischmann BK, Zaehres H, Scholer HR (2009) Oct4-induced pluripotency in adult neural stem cells. Cell 136:411–419

    Article  PubMed  CAS  Google Scholar 

  21. Qin T, Miao XY (2010) Current progress and application prospects of induced pluripotent stem cells. Yi Chuan 32:1205–1214

    PubMed  CAS  Google Scholar 

  22. Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ (2008) Disease-specific induced pluripotent stem cells. Cell 134:877–886

    Article  PubMed  CAS  Google Scholar 

  23. Emdad L, D’Souza SL, Kothari HP, Qadeer ZA, Germano IM (2011) Efficient differentiation of human embryonic and induced pluripotent stem cells into functional astrocytes. Stem Cells Dev. Not available-, ahead of print. doi:10.1089/scd.2010.0560

  24. Bootman MD, Lipp P, Berridge MJ (2001) The organisation and functions of local Ca(2+) signals. J Cell Sci 114:2213–2222

    PubMed  CAS  Google Scholar 

  25. Berridge MJ (1998) Neuronal calcium signaling. Neuron 21:13–26

    Article  PubMed  CAS  Google Scholar 

  26. Sun S, Liu Y, Lipsky S, Cho M (2007) Physical manipulation of calcium oscillations facilitates osteodifferentiation of human mesenchymal stem cells. FASEB J 21:1472–1480

    Article  PubMed  CAS  Google Scholar 

  27. Gu X, Olson EC, Spitzer NC (1994) Spontaneous neuronal calcium spikes and waves during early differentiation. J Neurosci 14:6325–6335

    PubMed  CAS  Google Scholar 

  28. Buonanno A, Fields RD (1999) Gene regulation by patterned electrical activity during neural and skeletal muscle development. Curr Opin Neurobiol 9:110–120

    Article  PubMed  CAS  Google Scholar 

  29. Ferrari MB, Ribbeck K, Hagler DJ, Spitzer NC (1998) A calcium signaling cascade essential for myosin thick filament assembly in Xenopus myocytes. J Cell Biol 141:1349–1356

    Article  PubMed  CAS  Google Scholar 

  30. Gu X, Spitzer NC (1995) Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients. Nature 375:784–787

    Article  PubMed  CAS  Google Scholar 

  31. Carey MB, Matsumoto SG (1999) Spontaneous calcium transients are required for neuronal differentiation of murine neural crest. Dev Biol 215:298–313

    Article  PubMed  CAS  Google Scholar 

  32. Gomez TM, Spitzer NC (1999) In vivo regulation of axon extension and pathfinding by growth-cone calcium transients. Nature 397:350–355

    Article  PubMed  CAS  Google Scholar 

  33. Wong RC, Pera MF, Pebay A (2008) Role of gap junctions in embryonic and somatic stem cells. Stem Cell Rev 4:283–292

    Article  PubMed  CAS  Google Scholar 

  34. Bootman M, Niggli E, Berridge M, Lipp P (1997) Imaging the hierarchical Ca2+ signalling system in HeLa cells. J Physiol 499(Pt 2):307–314

    PubMed  CAS  Google Scholar 

  35. Lipp P, Niggli E (1998) Fundamental calcium release events revealed by two-photon excitation photolysis of caged calcium in Guinea-pig cardiac myocytes. J Physiol 508(Pt 3):801–809

    Article  PubMed  CAS  Google Scholar 

  36. Yao Y, Choi J, Parker I (1995) Quantal puffs of intracellular Ca2+ evoked by inositol trisphosphate in Xenopus oocytes. J Physiol 482(Pt 3):533–553

    PubMed  CAS  Google Scholar 

  37. Cheng H, Lederer WJ, Cannell MB (1993) Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262:740–744

    Article  PubMed  CAS  Google Scholar 

  38. Bootman MD, Berridge MJ (1996) Subcellular Ca2+ signals underlying waves and graded responses in HeLa cells. Curr Biol 6:855–865

    Article  PubMed  CAS  Google Scholar 

  39. Bootman MD, Berridge MJ, Lipp P (1997) Cooking with calcium: the recipes for composing global signals from elementary events. Cell 91:367–373

    Article  PubMed  CAS  Google Scholar 

  40. Lautermilch NJ, Spitzer NC (2000) Regulation of calcineurin by growth cone calcium waves controls neurite extension. J Neurosci 20:315–325

    PubMed  CAS  Google Scholar 

  41. Spitzer NC, Root CM, Borodinsky LN (2004) Orchestrating neuronal differentiation: patterns of Ca2+ spikes specify transmitter choice. Trends Neurosci 27:415–421

    Article  PubMed  CAS  Google Scholar 

  42. Resende RR, Alves AS, Britto LR, Ulrich H (2008) Role of acetylcholine receptors in proliferation and differentiation of P19 embryonal carcinoma cells. Exp Cell Res 314:1429–1443

    Article  PubMed  CAS  Google Scholar 

  43. Resende RR, Gomes KN, Adhikari A, Britto LR, Ulrich H (2008) Mechanism of acetylcholine-induced calcium signaling during neuronal differentiation of P19 embryonal carcinoma cells in vitro. Cell Calcium 43:107–121

    Article  PubMed  CAS  Google Scholar 

  44. Bird GS, Putney JW Jr (1996) Effect of inositol 1,3,4,5-tetrakisphosphate on inositol trisphosphate-activated Ca2+ signaling in mouse lacrimal acinar cells. J Biol Chem 271: 6766–6770

    Article  PubMed  CAS  Google Scholar 

  45. Tumelty J, Scholfield N, Stewart M, Curtis T, McGeown G (2007) Ca2+-sparks constitute elementary building blocks for global Ca2+-signals in myocytes of retinal arterioles. Cell Calcium 41:451–466

    Article  PubMed  CAS  Google Scholar 

  46. Maier LS, Zhang T, Chen L, DeSantiago J, Brown JH, Bers DM (2003) Transgenic CaMKIIdeltaC overexpression uniquely alters cardiac myocyte Ca2+ handling: reduced SR Ca2+ load and activated SR Ca2+ release. Circ Res 92:904–911

    Article  PubMed  CAS  Google Scholar 

  47. Dolmetsch RE, Lewis RS, Goodnow CC, Healy JI (1997) Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386:855–858

    Article  PubMed  CAS  Google Scholar 

  48. Dolmetsch RE, Xu K, Lewis RS (1998) Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392:933–936

    Article  PubMed  CAS  Google Scholar 

  49. Li W, Llopis J, Whitney M, Zlokarnik G, Tsien RY (1998) Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature 392:936–941

    Article  PubMed  CAS  Google Scholar 

  50. Lo Turco JJ, Kriegstein AR (1991) Clusters of coupled neuroblasts in embryonic neocortex. Science 252:563–566

    Article  PubMed  CAS  Google Scholar 

  51. Weissman TA, Riquelme PA, Ivic L, Flint AC, Kriegstein AR (2004) Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron 43:647–661

    Article  PubMed  CAS  Google Scholar 

  52. Cotrina ML, Lin JH, Alves-Rodrigues A, Liu S, Li J, Azmi-Ghadimi H, Kang J, Naus CC, Nedergaard M (1998) Connexins regulate calcium signaling by controlling ATP release. Proc Natl Acad Sci USA 95:15735–15740

    Article  PubMed  CAS  Google Scholar 

  53. Kihara AH, Paschon V, Akamine PS, Saito KC, Leonelli M, Jiang JX, Hamassaki DE, Britto LR (2008) Differential expression of connexins during histogenesis of the chick retina. Dev Neurobiol 68:1287–1302

    Article  PubMed  CAS  Google Scholar 

  54. Kihara AH, Santos TO, Osuna-Melo EJ, Paschon V, Vidal KS, Akamine PS, Castro LM, Resende RR, Hamassaki DE, Britto LR (2010) Connexin-mediated communication controls cell proliferation and is essential in retinal histogenesis. Int J Dev Neurosci 28:39–52

    Article  PubMed  CAS  Google Scholar 

  55. Cina C, Bechberger JF, Ozog MA, Naus CC (2007) Expression of connexins in embryonic mouse neocortical development. J Comp Neurol 504:298–313

    Article  PubMed  CAS  Google Scholar 

  56. Resende RR, da Costa JL, Kihara AH, Adhikari A, Lorencon E (2010) Intracellular Ca2+ regulation during neuronal differentiation of murine embryonal carcinoma and mesenchymal stem cells. Stem Cells Dev 19:379–394

    Article  PubMed  CAS  Google Scholar 

  57. Resende RR, Adhikari A, da Costa JL, Lorencon E, Ladeira MS, Guatimosim S, Kihara AH, Ladeira LO (2010) Influence of spontaneous calcium events on cell-cycle progression in embryonal carcinoma and adult stem cells. Biochim Biophys Acta 1803:246–260

    Article  PubMed  CAS  Google Scholar 

  58. Natarajan K, Berk BC (2006) Crosstalk coregulation mechanisms of G protein-coupled receptors and receptor tyrosine kinases. Methods Mol Biol 332:51–77

    PubMed  CAS  Google Scholar 

  59. Shen P, Larter R (1995) Chaos in intracellular Ca2+ oscillations in a new model for non-excitable cells. Cell Calcium 17:225–232

    Article  PubMed  CAS  Google Scholar 

  60. Woods NM, Cuthbertson KS, Cobbold PH (1986) Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes. Nature 319:600–602

    Article  PubMed  CAS  Google Scholar 

  61. Kraus M, Wolf B (1993) Cytosolic calcium oscillators: critical discussion and stochastic modelling. Biol Signals 2:1–15

    Article  PubMed  CAS  Google Scholar 

  62. Haisenleder DJ, Yasin M, Marshall JC (1997) Gonadotropin subunit and gonadotropin-releasing hormone receptor gene expression are regulated by alterations in the frequency of calcium pulsatile signals. Endocrinology 138:5227–5230

    Article  PubMed  CAS  Google Scholar 

  63. Chang LW, Spitzer NC (2009) Spontaneous calcium spike activity in embryonic spinal neurons is regulated by developmental expression of the Na+, K+-ATPase beta3 subunit. J Neurosci 29:7877–7885

    Article  PubMed  CAS  Google Scholar 

  64. Kuczewski N, Porcher C, Ferrand N, Fiorentino H, Pellegrino C, Kolarow R, Lessmann V, Medina I, Gaiarsa JL (2008) Backpropagating action potentials trigger dendritic release of BDNF during spontaneous network activity. J Neurosci 28:7013–7023

    Article  PubMed  CAS  Google Scholar 

  65. Willoughby D, Cooper DM (2006) Ca2+ stimulation of adenylyl cyclase generates dynamic oscillations in cyclic AMP. J Cell Sci 119:828–836

    Article  PubMed  CAS  Google Scholar 

  66. Kaang BK, Kandel ER, Grant SGN (1993) Activation of camp-responsive genes by stimuli that produce long-term facilitation in aplysia sensory neurons. Neuron 10:427–435

    Article  PubMed  CAS  Google Scholar 

  67. Gorbunova YV, Spitzer NC (2002) Dynamic interactions of cyclic AMP transients and spontaneous Ca(2+) spikes. Nature 418:93–96

    Article  PubMed  CAS  Google Scholar 

  68. Bacskai BJ, Hochner B, Mahaut-Smith M, Adams SR, Kaang BK, Kandel ER, Tsien RY (1993) Spatially resolved dynamics of cAMP and protein kinase A subunits in Aplysia sensory neurons. Science 260:222–226

    Article  PubMed  CAS  Google Scholar 

  69. Cooper DM, Mons N, Karpen JW (1995) Adenylyl cyclases and the interaction between calcium and cAMP signalling. Nature 374:421–424

    Article  PubMed  CAS  Google Scholar 

  70. Willoughby D, Cooper DM (2007) Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains. Physiol Rev 87:965–1010

    Article  PubMed  CAS  Google Scholar 

  71. Resende RR, Britto LR, Ulrich H (2008) Pharmacological properties of purinergic receptors and their effects on proliferation and induction of neuronal differentiation of P19 embryonal carcinoma cells. Int J Dev Neurosci 26:763–777

    Article  PubMed  CAS  Google Scholar 

  72. Ciccolini F, Collins TJ, Sudhoelter J, Lipp P, Berridge MJ, Bootman MD (2003) Local and global spontaneous calcium events regulate neurite outgrowth and onset of GABAergic phenotype during neural precursor differentiation. J Neurosci 23:103–111

    PubMed  CAS  Google Scholar 

  73. Bading H (2000) Transcription-dependent neuronal plasticity the nuclear calcium hypothesis. Eur J Biochem 267:5280–5283

    Article  PubMed  CAS  Google Scholar 

  74. Hardingham GE, Chawla S, Johnson CM, Bading H (1997) Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature 385:260–265

    Article  PubMed  CAS  Google Scholar 

  75. Studzinski DM, Callahan RE, Benjamins JA (1999) Increased intracellular calcium alters myelin gene expression in the N20.1 oligodendroglial cell line. J Neurosci Res 57:633–642

    Article  PubMed  CAS  Google Scholar 

  76. Ferreira-Martins J, Rondon-Clavo C, Tugal D, Korn JA, Rizzi R, Padin-Iruegas ME, Ottolenghi S, De Angelis A, Urbanek K, Ide-Iwata N, D’Amario D, Hosoda T, Leri A, Kajstura J, Anversa P, Rota M (2009) Spontaneous calcium oscillations regulate human cardiac progenitor cell growth. Circ Res 105:764–774

    Article  PubMed  CAS  Google Scholar 

  77. Uhlen P, Burch PM, Zito CI, Estrada M, Ehrlich BE, Bennett AM (2006) Gain-of-function/Noonan syndrome SHP-2/Ptpn11 mutants enhance calcium oscillations and impair NFAT signaling. Proc Natl Acad Sci USA 103:2160–2165

    Article  PubMed  CAS  Google Scholar 

  78. Scemes E, Duval N, Meda P (2003) Reduced expression of P2Y1 receptors in connexin43-null mice alters calcium signaling and migration of neural progenitor cells. J Neurosci 23:11444–11452

    PubMed  CAS  Google Scholar 

  79. Moreau M, Neant I, Webb SE, Miller AL, Leclerc C (2008) Calcium signalling during neural induction in Xenopus laevis embryos. Philos Trans R Soc Lond B Biol Sci 363:1371–1375

    Article  PubMed  CAS  Google Scholar 

  80. Leclerc C, Webb SE, Daguzan C, Moreau M, Miller AL (2000) Imaging patterns of calcium transients during neural induction in Xenopus laevis embryos. J Cell Sci 113(Pt 19):3519–3529

    PubMed  CAS  Google Scholar 

  81. Swiers G, Patient R, Loose M (2006) Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage specification. Dev Biol 294:525–540

    Article  PubMed  CAS  Google Scholar 

  82. Theilgaard-Monch K, Jacobsen LC, Borup R, Rasmussen T, Bjerregaard MD, Nielsen FC, Cowland JB, Borregaard N (2005) The transcriptional program of terminal granulocytic differentiation. Blood 105:1785–1796

    Article  PubMed  CAS  Google Scholar 

  83. May RM (1972) Will a large complex system be stable? Nature 238:413–414

    Article  PubMed  CAS  Google Scholar 

  84. Kauffman S (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, New York

    Google Scholar 

  85. Aldana M, Cluzel P (2003) A natural class of robust networks. Proc Natl Acad Sci USA 100:8710–8714

    Article  PubMed  CAS  Google Scholar 

  86. Chang HH, Oh PY, Ingber DE, Huang S (2006) Multistable and multistep dynamics in neutrophil differentiation. BMC Cell Biol 7:11

    Article  PubMed  CAS  Google Scholar 

  87. Ferrell JE, Xiong W (2001) Bistability in cell signaling: how to make continuous processes discontinuous, and reversible processes irreversible. Chaos 11:227–236

    Article  PubMed  CAS  Google Scholar 

  88. Xiong W, Ferrell JE Jr (2003) A positive-feedback-based bistable ‘memory module’ that governs a cell fate decision. Nature 426:460–465

    Article  PubMed  CAS  Google Scholar 

  89. Huang S, Guo YP, May G, Enver T (2007) Bifurcation dynamics in lineage-commitment in bipotent progenitor cells. Dev Biol 305:695–713

    Article  PubMed  CAS  Google Scholar 

  90. Ying QL, Nichols J, Chambers I, Smith A (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281–292

    Article  PubMed  CAS  Google Scholar 

  91. Niwa H, Ogawa K, Shimosato D, Adachi K (2009) A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature 460:118–122

    Article  PubMed  CAS  Google Scholar 

  92. Wei CL, Miura T, Robson P, Lim SK, Xu XQ, Lee MY, Gupta S, Stanton L, Luo Y, Schmitt J, Thies S, Wang W, Khrebtukova I, Zhou D, Liu ET, Ruan YJ, Rao M, Lim B (2005) Transcriptome profiling of human and murine ESCs identifies divergent paths required to maintain the stem cell state. Stem Cells 23:166–185

    Article  PubMed  CAS  Google Scholar 

  93. Dvorak P, Dvorakova D, Koskova S, Vodinska M, Najvirtova M, Krekac D, Hampl A (2005) Expression and potential role of fibroblast growth factor 2 and its receptors in human embryonic stem cells. Stem Cells 23:1200–1211

    Article  PubMed  CAS  Google Scholar 

  94. Todorova MG, Fuentes E, Soria B, Nadal A, Quesada I (2009) Lysophosphatidic acid induces Ca2+ mobilization and c-Myc expression in mouse embryonic stem cells via the phospholipase C pathway. Cell Signal 21:523–528

    Article  PubMed  CAS  Google Scholar 

  95. Schulte G, Bryja V (2007) The Frizzled family of unconventional G-protein-coupled receptors. Trends Pharmacol Sci 28:518–525

    Article  PubMed  CAS  Google Scholar 

  96. Bhandari DR, Seo KW, Roh KH, Jung JW, Kang SK, Kang KS (2010) REX-1 expression and p38 MAPK activation status can determine proliferation/differentiation fates in human mesenchymal stem cells. PLoS One 5:e10493

    Article  PubMed  CAS  Google Scholar 

  97. Li L, Sun L, Gao F, Jiang J, Yang Y, Li C, Gu J, Wei Z, Yang A, Lu R, Ma Y, Tang F, Kwon SW, Zhao Y, Li J, Jin Y (2010) Stk40 links the pluripotency factor Oct4 to the Erk/MAPK pathway and controls extraembryonic endoderm differentiation. Proc Natl Acad Sci USA 107:1402–1407

    Article  PubMed  CAS  Google Scholar 

  98. Jiang H, Grenley MO, Bravo MJ, Blumhagen RZ, Edgar BA (2011) EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila. Cell Stem Cell 8:84–95

    Article  PubMed  CAS  Google Scholar 

  99. Batts SA, Raphael Y (2007) Transdifferentiation and its applicability for inner ear therapy. Hear Res 227:41–47

    Article  PubMed  CAS  Google Scholar 

  100. Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, Wilkinson CD, Oreffo RO (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 6:997–1003

    Article  PubMed  CAS  Google Scholar 

  101. Charbord P, Moore K (2005) Gene expression in stem cell-supporting stromal cell lines. Ann NY Acad Sci 1044:159–167

    Article  PubMed  CAS  Google Scholar 

  102. Dutt P, Wang JF, Groopman JE (1998) Stromal cell-derived factor-1 alpha and stem cell factor/kit ligand share signaling pathways in hemopoietic progenitors: a potential mechanism for cooperative induction of chemotaxis. J Immunol 161:3652–3658

    PubMed  CAS  Google Scholar 

  103. de Boer J, Siddappa R, Gaspar C, van Apeldoorn A, Fodde R, van Blitterswijk C (2004) Wnt signaling inhibits osteogenic differentiation of human mesenchymal stem cells. Bone 34:818–826

    Article  PubMed  CAS  Google Scholar 

  104. Rizo A, Vellenga E, de Haan G, Schuringa JJ (2006) Signaling pathways in self-renewing hematopoietic and leukemic stem cells: do all stem cells need a niche? Hum Mol Genet 15(Spec No 2):R210–R219

    Article  PubMed  CAS  Google Scholar 

  105. Clapham DE (2007) Calcium signaling. Cell 131:1047–1058

    Article  PubMed  CAS  Google Scholar 

  106. Kajiume T, Ninomiya Y, Ishihara H, Kanno R, Kanno M (2004) Polycomb group gene mel-18 modulates the self-renewal activity and cell cycle status of hematopoietic stem cells. Exp Hematol 32:571–578

    Article  PubMed  CAS  Google Scholar 

  107. Singh V, Mueller U, Freyschmidt-Paul P, Zoller M (2011) Delayed type hypersensitivity-induced myeloid-derived suppressor cells regulate autoreactive T cells. Eur J Immunol 41:2871–2882

    Article  PubMed  CAS  Google Scholar 

  108. Puceat M, Jaconi M (2005) Ca2+ signalling in cardiogenesis. Cell Calcium 38:383–389

    Article  PubMed  CAS  Google Scholar 

  109. Park JS, Kim YS, Yoo MA (2009) The role of p38b MAPK in age-related modulation of intestinal stem cell proliferation and differentiation in Drosophila. Aging (Albany NY) 1:637–651

    CAS  Google Scholar 

  110. Grajales L, Garcia J, Banach K, Geenen DL (2010) Delayed enrichment of mesenchymal cells promotes cardiac lineage and calcium transient development. J Mol Cell Cardiol 48:735–745

    Article  PubMed  CAS  Google Scholar 

  111. Biteau B, Hochmuth CE, Jasper H (2008) JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. Cell Stem Cell 3:442–455

    Article  PubMed  CAS  Google Scholar 

  112. Reim K, Mansour M, Varoqueaux F, McMahon HT, Sudhof TC, Brose N, Rosenmund C (2001) Complexins regulate a late step in Ca2+-dependent neurotransmitter release. Cell 104:71–81

    Article  PubMed  CAS  Google Scholar 

  113. Kawano S, Otsu K, Kuruma A, Shoji S, Yanagida E, Muto Y, Yoshikawa F, Hirayama Y, Mikoshiba K, Furuichi T (2006) ATP autocrine/paracrine signaling induces calcium oscillations and NFAT activation in human mesenchymal stem cells. Cell Calcium 39:313–324

    Article  PubMed  CAS  Google Scholar 

  114. Sauka-Spengler T, Bronner-Fraser M (2008) A gene regulatory network orchestrates neural crest formation. Nat Rev Mol Cell Biol 9:557–568

    Article  PubMed  CAS  Google Scholar 

  115. Winkler DA, Burden FR, Halley JD (2009) Predictive mesoscale network model of cell fate decisions during C. elegans embryogenesis. Artif Life 15:411–421

    Article  PubMed  Google Scholar 

  116. Raff MC (1992) Social controls on cell survival and cell death. Nature 356:397–400

    Article  PubMed  CAS  Google Scholar 

  117. Evan G, Littlewood T (1998) A matter of life and cell death. Science 281:1317–1322

    Article  PubMed  CAS  Google Scholar 

  118. Baubet V, Le Mouellic H, Campbell AK, Lucas-Meunier E, Fossier P, Brulet P (2000) Chimeric green fluorescent protein-aequorin as bioluminescent Ca2+ reporters at the single-cell level. Proc Natl Acad Sci USA 97:7260–7265

    Article  PubMed  CAS  Google Scholar 

  119. Brini M, Pinton P, Pozzan T, Rizzuto R (1999) Targeted recombinant aequorins: tools for monitoring [Ca2+] in the various compartments of a living cell. Microsc Res Tech 46:380–389

    Article  PubMed  CAS  Google Scholar 

  120. Dorsky RI, Sheldahl LC, Moon RT (2002) A transgenic Lef1/beta-catenin-dependent reporter is expressed in spatially restricted domains throughout zebrafish development. Dev Biol 241:229–237

    Article  PubMed  CAS  Google Scholar 

  121. Li CJ, Heim R, Lu P, Pu Y, Tsien RY, Chang DC (1999) Dynamic redistribution of calmodulin in HeLa cells during cell division as revealed by a GFP-calmodulin fusion protein technique. J Cell Sci 112(Pt 10):1567–1577

    PubMed  CAS  Google Scholar 

  122. Torok K, Wilding M, Groigno L, Patel R, Whitaker M (1998) Imaging the spatial dynamics of calmodulin activation during mitosis. Curr Biol 8:692–699

    Article  PubMed  CAS  Google Scholar 

  123. Groth RD, Mermelstein PG (2003) Brain-derived neurotrophic factor activation of NFAT (nuclear factor of activated T-cells)-dependent transcription: a role for the transcription factor NFATc4 in neurotrophin-mediated gene expression. J Neurosci 23:8125–8134

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Instituto Nacional de Ciência e Tecnologia de Nanomateriais de Carbono, CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), Brazil. R.R.R, L.O.L., K.N.G., and D.A.G. are grateful for grants from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais), and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo R. Resende .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tonelli, F.M.P. et al. (2012). Stem Cells and Calcium Signaling. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 740. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2888-2_40

Download citation

Publish with us

Policies and ethics