Skip to main content

Advertisement

Log in

From Finite Element Meshes to Clouds of Points: A Review of Methods for Generation of Computational Biomechanics Models for Patient-Specific Applications

  • Computational Biomechanics for Patient-Specific Applications
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

It has been envisaged that advances in computing and engineering technologies could extend surgeons’ ability to plan and carry out surgical interventions more accurately and with less trauma. The progress in this area depends crucially on the ability to create robustly and rapidly patient-specific biomechanical models. We focus on methods for generation of patient-specific computational grids used for solving partial differential equations governing the mechanics of the body organs. We review state-of-the-art in this area and provide suggestions for future research. To provide a complete picture of the field of patient-specific model generation, we also discuss methods for identifying and assigning patient-specific material properties of tissues and boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Aggarwal, L., and N. Sharma. Automated medical image segmentation techniques. J. Med. Phys. 35:3–14, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Altair. RADIOSS, 2015. http://www.altairhyperworks.com/HWTemp1Product.aspx?product_id=42.

  3. ANSYS®. Academic Research, Release 16.0, 2015. http://www.ansys.com/.

  4. Ateshian, G. A., C. R. Henak, and J. A. Weiss. Toward patient-specific articular contact mechanics. J. Biomech. 48:779–786, 2015.

    Article  PubMed  Google Scholar 

  5. Babuska, I., and J. T. Oden. Verification and validation in computational engineering and science: basic concepts. Comput. Methods Appl. Mech. Eng. 193:4057–4066, 2004.

    Article  Google Scholar 

  6. Baker, T. J. Automatic mesh generation for complex three-dimensional regions using a constrained Delaunay triangulation. Eng. Comput. 5:161–175, 1989.

    Article  Google Scholar 

  7. Bathe, K.-J. Finite Element Procedures. Upper Saddle River: Prentice-Hall, 1996.

    Google Scholar 

  8. Bazilevs, Y., V. M. Calo, Y. Zhang, and T. J. R. Hughes. Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput. Mech. 38:310–322, 2006.

    Article  Google Scholar 

  9. Beucher, S., and F. Meyer. The morphological approach to segmentation: the watershed transformation. In: Mathematical Morphology in Image Processing, edited by E. R. Dougherty. New York: Marcel Dekker, 1993, pp. 433–481.

    Google Scholar 

  10. Billet, F., M. Sermesant, H. Delingette, and N. Ayache. Cardiac motion recovery and boundary conditions estimation by coupling an electromechanical model and cine-MRI data. In: Functional Imaging and Modeling of the Heart, edited by N. Ayache, H. Delingette, and M. Sermesant. Heidelberg: Springer, 2009, pp. 376–385.

    Chapter  Google Scholar 

  11. Bilston, L. E. Brain tissue mechanical properties. In: Biomechanics of the Brain, edited by K. Miller. New York: Springer, 2011, pp. 69–89.

    Chapter  Google Scholar 

  12. Blacker, T. D., and R. J. Meyers. Seams and wedges in plastering: a 3D hexahedral mesh generation algorithm. Eng. Comput. 2:83–93, 1993.

    Article  Google Scholar 

  13. Bonet, J., and A. J. Burton. A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications. Commun. Numer. Methods Eng. 14:437–449, 1998.

    Article  Google Scholar 

  14. Bornemann, F., B. Erdmann, and R. Kornhuber. Adaptive multilevel methods in three space dimensions. Int. J. Numer. Methods Eng. 36:3187–3203, 1993.

    Article  Google Scholar 

  15. Bourdin X., X. Torsseille, P. Petit and P. Beillas. Comparison of tetrahedral and hexahedral meshes for organ finite element modeling: an application kidney impact. In: 20th International Technical Conference on the Enhanced Safety of Vehicles, Lyon: NHTSA, 2007.

  16. Bradley C., A. Bowery, R. Britten, V. Budelmann, O. Camara, R. Christie, A. Cookson, A. F. Frangi, T. B. Gamage, T. Heidlauf, S. Krittian, D. Ladd, C. Little, K. Mithraratne, M. Nash, D. Nickerson, P. Nielsen, O. Nordbo, S. Omholt, A. Pashaei, D. Paterson, V. Rajagopal, A. Reeve, O. Röhrle, S. Safaei, R. Sebastiàn, M. Steghöfer, T. Wu, T. Yu, H. Zhang, and P. Hunter. OpenCMISS: a multi-physics and multi-scale computational infrastructure for the VPH/Physiome project. Prog. Biophys. Mol. Biol. 107:32–47, 2011.

  17. Brandao, S., T. Da Roza, M. Parente, I. Ramos, T. Mascarenhas, and R. M. N. Jorge. Magnetic resonance imaging of the pelvic floor: from clinical to biomechanical imaging. Proc. IMechE Part H-J. Eng. Med. 227:1324–1332, 2013.

    Article  Google Scholar 

  18. Bucki, M., C. Lobos, and Y. Payan. A fast and robust patient specific finite element mesh registration technique: application to 60 clinical cases. Med. Image Anal. 14:303–317, 2010.

    Article  PubMed  Google Scholar 

  19. Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8:679–698, 1986.

    Article  PubMed  CAS  Google Scholar 

  20. Choi, W. Y., D. Y. Kwak, I. H. Son, and Y. T. Im. Tetrahedral mesh generation based on advancing front technique and optimization scheme. Int. J. Numer. Methods Eng. 58:1857–1872, 2003.

    Article  Google Scholar 

  21. Chowdhury, H. A., G. R. Joldes, A. Wittek, B. Doyle, E. Pasternak, and K. Miller. Implementation of a modified moving least squares approximation for predicting soft tissue deformation using a meshless method. In: Computational Biomechanics for Medicine: New Approaches and New Applications, edited by B. Doyle, K. Miller, A. Wittek, and P. M. F. Nielsen. Cham, Switzerland: Springer, 2015, pp. 59–71.

    Google Scholar 

  22. Ciarlet, P. G. Mathematical Elasticity. The Netherlands: North Hollad, 1988.

    Google Scholar 

  23. Costa, K. D., P. J. Hunter, J. S. Wayne, L. K. Waldman, J. M. Guccione, and A. D. McCulloch. A three-dimensional finite element method for large elastic deformations of ventricular myocardium: II-prolate spheroidal coordinates. J. Biomech. Eng.-T ASME. 118:464–472, 1996.

    Article  CAS  Google Scholar 

  24. Courtecuisse, H., J. R. M. Allard, P. Kerfriden, S. P. A. Bordas, S. Cotin, and C. Duriez. Real-time simulation of contact and cutting of heterogeneous soft-tissues. Med. Image Anal. 18:394–410, 2014.

    Article  PubMed  Google Scholar 

  25. Darvish K. K. and J. R. Crandall. Influence of brain material properties and boundary conditions on brain response during dynamic loading. In: Proc. of International Conference on the Biomechanics of Impacts, IRCOBI. Munich, Germany: 2002, p. 339–350.

  26. Dassault Systemes, ABAQUS Theory Guide 6.13, 2013. http://129.97.46.200:2080/v6.13/books/stm/default.htm/.

  27. Davis, L. S. A survey of edge detection techniques. Comput. Graph. Image Process. 4:248–270, 1975.

    Article  Google Scholar 

  28. De Santis, G., M. De Beule, K. Van Canneyt, P. Segers, P. Verdonck, and B. Verhegghe. Full-hexahedral structured meshing for image-based computational vascular modeling. Med. Eng. Phys. 33:1318–1325, 2011.

    Article  PubMed  Google Scholar 

  29. De Santis, G., P. Mortier, M. De Beule, P. Segers, P. Verdonck, and B. Verhegghe. Patient-specific computational fluid dynamics: structured mesh generation from coronary angiography. Med. Biol. Eng. Comput. 48:371–380, 2010.

    Article  PubMed  Google Scholar 

  30. Doblare, M., E. Cueto, B. Calvo, M. A. Martinez, J. M. Garcia, and J. Cegonino. On the employ of meshless methods in biomechanics. Comput. Methods Appl. Mech. 194:801–821, 2005.

    Article  Google Scholar 

  31. Dooris, A. P., V. K. Goel, N. M. Grosland, L. G. Gilbertson, and D. G. Wilder. Load-sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc. Spine 26:E122–129, 2001.

    Article  PubMed  CAS  Google Scholar 

  32. Doyle, B. J., A. Callanan, P. E. Burke, P. A. Grace, M. T. Walsh, D. A. Vorp, and T. M. McGloughlin. Vessel asymmetry as an additional diagnostic tool in the assessment of abdominal aortic aneurysms. J. Vasc. Surg. 49:443–454, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fedorov, A., R. Beichel, J. Kalpathy-Cramer, J. Finet, J.-C. Fillion-Robin, S. Pujol, C. Bauer, D. Jennings, F. Fennessy, M. Sonka, J. Buatti, S. Aylward, J. V. Miller, S. Pieper, and R. Kikinis. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 30:1323–1341, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Foteinos, P. A., Y. Liu, A. N. Chernikov, and N. P. Chrisochoides. An evaluation of tetrahedral mesh generation for nonrigid registration of brain MRI. In: Computational Biomechanics for Medicine, edited by A. Wittek, P. M. F. Nielsen, and K. Miller. New York: Springer, 2011, pp. 131–142.

    Chapter  Google Scholar 

  35. Fung, Y. C. Biomechanics. Mechanical Properties of Living Tissues. New York: Springer, 1993.

    Google Scholar 

  36. Garra, B. S. Elastography: history, principles, and technique comparison. Abdom. Imaging 40:680–697, 2015.

    Article  PubMed  Google Scholar 

  37. Gefen, A., M. Megido-Ravid, Y. Itzchak, and M. Arcan. Biomechanical analysis of the three-dimensional foot structure during gait: a basic tool for clinical applications. J. Biomech. Eng.-T ASME. 122:630–639, 2000.

    Article  CAS  Google Scholar 

  38. George, P. L. Automatic Mesh Generation: Application to Finite Element Methods. Chichester: Wiley, 1993.

    Google Scholar 

  39. Geuzaine, C., and J. F. Remacle. Gmsh: a 3D finite element mesh generator with built-in pre- and post-processing facilities. Int. Numer. Methods Eng. 79:1309–1331, 2009.

    Article  Google Scholar 

  40. Graham, S., R. Taylor, and M. Vannier. Needs assessment for computer-integrated surgery systems. In: Medical Image Computing and Computer-Assisted Intervention MICCAI 2000, Lecture Notes in Computer Science, Vol. 1935, edited by S. L. Delp, A. M. DiGoia, and B. Jaramaz. Berlin: Springer, 2000, pp. 931–939.

    Google Scholar 

  41. Grimson, W. E. L., M. E. Leventon, G. Ettinger, A. Chabrerie, F. Ozlen, S. Nakajima, H. Atsumi, R. Kikinis, and P. Black. Clinical experience with a high precision image-guided neurosurgery system. Lect. Notes Comput. Sci. 1496:63–73, 2008.

    Article  Google Scholar 

  42. Grosland, N. M., K. H. Shivanna, V. A. Magnotta, N. A. Kallemeyn, N. A. DeVries, S. C. Tadepalli, and C. Lisle. IA-FEMesh: an open-source, interactive, multiblock approach to anatomic finite element model development. Comput. Methods Prog. Biol. 94:96–107, 2009.

    Article  Google Scholar 

  43. Hancock, E. R., and J. Kittler. Edge labeling using dictionary-based relaxation. IEEE Trans. PAMI 12:165–181, 1990.

    Article  Google Scholar 

  44. Ho-Le, K. Finite element mesh generation methods: a review and classification. Comput.-Aided Design 20:27–38, 1988.

    Article  Google Scholar 

  45. Holgate, N., G. R. Joldes, and K. Miller. Efficient visibility criterion for discontinuities discretised by triangular surface meshes. Eng. Anal. Bound. Elem. 58:1–6, 2015.

    Article  Google Scholar 

  46. Horton, A., A. Wittek, G. R. Joldes, and K. Miller. A meshless Total Lagrangian explicit dynamics algorithm for surgical simulation. Int. J. Numer. Methods Biomed. Eng. 26:977–998, 2010.

    Article  Google Scholar 

  47. Hughes, T. J. R. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. New York: Dover Publications, 2000.

    Google Scholar 

  48. Hughes, T. J. R., J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194:4135–4195, 2005.

    Article  Google Scholar 

  49. Hunter, P. J., and B. H. Smaill. The analysis of cardiac function: a continuum approach. Prog. Biophys. Mol. Biol. 52:101–164, 1988.

    Article  PubMed  CAS  Google Scholar 

  50. Ito, Y., A. M. Shih, and B. K. Soni. Octree-based reasonable-quality hexahedral mesh generation using a new set of refinement templates. Int. Numer. Methods Eng. 77:1809–1833, 2009.

    Article  Google Scholar 

  51. Ito, Y., P. C. Shum, A. M. Shih, B. K. Soni, and K. Nakahashi. Robust generation of high-quality unstructured meshes on realistic biomedical geometry. Int. Numer. Methods Eng. 65:943–973, 2006.

    Article  Google Scholar 

  52. Jahya, A., M. G. Schouten, J. J. Fütterer, and S. Misra. On the importance of modelling organ geometry and boundary conditions for predicting three-dimensional prostate deformation. Comput. Methods Biomech. Biomed. Eng. 17:497–506, 2014.

    Article  Google Scholar 

  53. Janssen, D., K. A. Mann, and N. Verdonschot. Finite element simulation of cement-bone interface micromechanics: a comparison to experimental results. J. Orthop. Res. 27:1312–1318, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Jin, X., G. R. Joldes, K. Miller, K. H. Yang, and A. Wittek. Meshless algorithm for soft tissue cutting in surgical simulation. Comput. Methods Biomech. Biomed. Eng. 17:800–811, 2014.

    Article  Google Scholar 

  55. Jin X., H. Mao, K. Yang, and A. King. Constitutive modeling of pia–arachnoid complex. Ann. Biomed. Eng. 42:812–821, 2015.

  56. Joldes G. R., K. Miller, A. Wittek, and B. J. Doyle. A simple, effective and clinically applicable method to compute abdominal aortic aneurysm wall stress. J. Mechan. Behav. Biomed. Mater., 2015. doi:10.1016/j.jmbbm.2015.07.029.

  57. Joldes, G. R., A. Wittek, and K. Miller. Non-locking tetrahedral finite element for surgical simulation. Commun. Numer. Methods Eng. 25:827–836, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Joldes, G. R., A. Wittek, and K. Miller. Stable time step estimates for mesh-free particle methods. Int. J. Numer. Methods Eng. 91:450–456, 2012.

    Article  Google Scholar 

  59. Joldes, G. R., A. Wittek, and K. Miller. Adaptive numerical integration in Element-Free Galerkin methods for elliptic boundary value problems. Eng. Anal. Bound. Elem. 51:52–63, 2015.

    Article  Google Scholar 

  60. Kapur T., P. A. Beardsley, S. F. Gibson, W. E. L. Grimson, and W. M. Wells. Model-based segmentation of clinical knee MRI. In: Proc. IEEE Intl. Workshop on Model-Based 3D Image Analysis, 1998, pp. 97–106.

  61. Kapur, T., W. E. Grimson, W. M. Wells 3rd, and R. Kikinis. Segmentation of brain tissue from magnetic resonance images. Med. Image Anal. 1:109–127, 1996.

    Article  PubMed  CAS  Google Scholar 

  62. Kennedy, B. F., X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson. In vivo three-dimensional optical coherence elastography. Opt. Express 19:6623–6634, 2011.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Li, S., and W. K. Liu. Meshfree Particle Methods. Berlin: Springer, 2004.

    Google Scholar 

  64. Li, M., K. Miller, G. R. Joldes, B. Doyle, R. R. Garlapati, R. Kikinis, and A. Wittek. Patient-specific biomechanical model as whole-body CT image registration tool. Med. Image Anal. 22:22–34, 2015.

    Article  PubMed  Google Scholar 

  65. Li, M., K. Miller, G. Joldes, R. Kikinis, and A. Wittek. Patient-specific meshless model for whole-body image registration. In: Biomedical Simulation, edited by F. Bello, and S. Cotin. Switzerland: Springer International Publishing, 2014, pp. 50–57.

    Google Scholar 

  66. Liow, Y. T. A contour tracing algorithm that preserves common boundaries between regions. CVGIP Image Underst. 53:313–321, 1991.

    Article  Google Scholar 

  67. Livermore Software Technology Corporation LS-DYNA R7.1, 2014. http://www.lstc.com/products/ls-dyna.

  68. Lohner, R. Progress in grid generation via the advancing front technique. Eng. Comput. 12:186–210, 1996.

    Article  Google Scholar 

  69. Lu, J., X. L. Zhou, and M. L. Raghavan. Inverse method of stress analysis for cerebral aneurysms. Biomech. Model. Mech. 7:477–486, 2008.

    Article  Google Scholar 

  70. Luboz, V., E. Promayon, G. G. Chagnon, T. Alonso, D. Favier, C. Barthod, and Y. Payan. Validation of a Light Aspiration Device for In Vivo Soft Tissue Characterization (LASTIC). In: Soft Tissue Biomechanical Modeling for Computer Assisted Surgery, edited by Y. Payan. Berlin: Springer, 2012, pp. 243–256.

    Chapter  Google Scholar 

  71. Marchandise, E., P. Crosetto, C. Geuzaine, J.-F. Remacle, and E. Sauvage. Quality open source mesh generation for cardiovascular flow simulations. In: Modeling of Physiological Flows, edited by D. Ambrosi, A. Quarteroni, and G. Rozza. Milan: Springer, 2012, pp. 395–414.

    Chapter  Google Scholar 

  72. Marechal, L. Advances in Octree-based all-hexahedral mesh generation: handling sharp features. In: Proc. 18th International Meshing Roundtable, edited by B. Clark. Berlin: Springer, 2009, pp. 65–84.

    Chapter  Google Scholar 

  73. Mayeur O., J.-F. Witz, P. Lecomte, M. Brieu, M. Cosson, and K. Miller. Influence of geometry and mechanical properties on the accuracy of patient-specific simulation of women pelvic floor. Ann. Biomed. Eng., 2015. doi:10.1007/s10439-015-1401-9.

  74. Mazumder, M. M. G., K. Miller, S. Bunt, A. Mostayed, G. Joldes, R. Day, R. Hart, and A. Wittek. Mechanical properties of the brain–skull interface. Acta Bioeng. Biomech. 15:3–11, 2013.

    PubMed  Google Scholar 

  75. Miller, K., and K. Chinzei. Mechanical properties of brain tissue in tension. J. Biomech. 35:483–490, 2002.

    Article  PubMed  Google Scholar 

  76. Miller, K., A. Horton, G. R. Joldes, and A. Wittek. Beyond finite elements: a comprehensive, patient-specific neurosurgical simulation utilizing a meshless method. J. Biomech. 45:2698–2701, 2012.

    Article  PubMed  CAS  Google Scholar 

  77. Miller, K., and J. Lu. On the prospect of patient-specific biomechanics without patient-specific properties of tissues. J. Mech. Behav. Biomed. Mater. 27:154–166, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Miller, K., A. Wittek, and G. Joldes. Biomechanical modeling of the brain for computer-assisted neurosurgery. In: Biomechanics of the Brain, edited by K. Miller. New York: Springer, 2011, pp. 111–136.

    Chapter  Google Scholar 

  79. Miller, K., A. Wittek, G. Joldes, A. Horton, T. Dutta-Roy, J. Berger, and L. Morriss. Modelling brain deformations for computer-integrated neurosurgery. Int. J. Numer. Methods Biomed. Eng. 26:117–138, 2010.

    Article  Google Scholar 

  80. Nguyen, V. P., T. Rabczuk, S. Bordas, and M. Duflot. Meshless methods: a review and computer implementation aspects. Math. Comput. Simul. 79:763–813, 2008.

    Article  Google Scholar 

  81. Oonishi, H., H. Isha, and T. Hasegawa. Mechanical analysis of the human pelvis and its application to the artificial hip—by means of the three dimensional finite element. J. Biomech. 16:427–444, 1983.

    Article  PubMed  CAS  Google Scholar 

  82. Ophir, J., I. Cèspedes, H. Ponnekanti, Y. Yazdi, and X. Li. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason. Imaging 13:111–134, 1991.

    Article  PubMed  CAS  Google Scholar 

  83. Pham, D. L., C. Y. Xu, and J. L. Prince. Current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2:315–337, 2000.

    Article  PubMed  CAS  Google Scholar 

  84. Rabczuk, T., S. Bordas, and G. Zi. On three-dimensional modelling of crack growth using partition of unity methods. Comput. Struct. 88:1391–1411, 2010.

    Article  Google Scholar 

  85. Ramme, A. J., A. J. Criswell, B. R. Wolf, V. A. Magnotta, and N. M. Grosland. EM segmentation of the distal femur and proximal tibia: a high-throughput approach to anatomic surface generation. Ann. Biomed. Eng. 39:1555–1562, 2011.

    Article  PubMed  Google Scholar 

  86. Rohan, P. Y., C. Lobos, M. A. Nazari, P. Perrier, and Y. Payan. Finite element modelling of nearly incompressible materials and volumetric locking: a case study. Comput. Methods Biomech. Biomed. Eng. 17:192–193, 2014.

    Article  Google Scholar 

  87. Rosset, A., L. Spadola, L. Pysher, and O. Ratib. Navigating the fifth dimension: innovative interface for multidimensional multimodality image navigation. Radio Graphics 26:299–308, 2006.

    Google Scholar 

  88. Sahoo, P. K., S. Soltani, and A. K. C. Wong. A survey of thresholding techniques. Comput. Vis. Graph. Image Process. 41:233–260, 1988.

    Article  Google Scholar 

  89. Schonning, A., B. Oommen, I. Ionescu, and T. Conway. Hexahedral mesh development of free-formed geometry: the human femur exemplified. Comput. Aided Design. 41:566–572, 2009.

    Article  Google Scholar 

  90. Sethian, J. A. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Science. New York: Cambridge University Press, 1999.

    Google Scholar 

  91. Sezgin, M., and B. Sankur. Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13:146–168, 2004.

    Article  Google Scholar 

  92. Shewchuk, J. R. Delaunay refinement algorithms for triangular mesh generation. Comput. Geom. 22:21–74, 2002.

    Article  Google Scholar 

  93. Sinkus, R., J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, and D. Holz. High-resolution tensor MR elastography for breast tumour detection. Phys. Med. Biol. 45:1649–1664, 2000.

    Article  PubMed  CAS  Google Scholar 

  94. Tautges, T. J., T. Blacker, and S. A. Mitchell. The whisker weaving algorithm: a connectivity-based method for constructing all-hexahedral finite element meshes. Int. J. Numer. Methods Eng. 39:3327–3349, 1996.

    Article  Google Scholar 

  95. Tawhai, M. H., P. Hunter, J. Tschirren, J. Reinhardt, G. McLennan, and E. A. Hoffman. CT-based geometry analysis and finite element models of the human and ovine bronchial tree. J. Appl. Physiol. 97:2310–2321, 2004.

    Article  PubMed  Google Scholar 

  96. Taylor, R. H., S. Lavallee, G. C. Burdea, and R. Mosges. Introduction. In: Computer-Integrated Surgery: Technology and Clinical Applications, edited by R. H. Taylor, S. Lavallee, G. C. Burdea, and R. Mosges. Cambridge, MI: MIT Press, 1996, pp. xiii–xix.

  97. TetGen. A Quality Tetrahedral Mesh Generator and 3D Delaunay Triangulator. User’s Manual. Version 1.5. 2013.

  98. Thompson, J. F. Part I Block-structured grids. In: Handbook of Grid Generation, edited by J. F. Thompson, B. K. Soni, and N. P. Weatherill. Boca Raton: CRC Press, 1999, pp. 1–12.

    Google Scholar 

  99. Trabelsi O., A. Duprey, J.-P. Favre, and S. Avril. Predictive models with patient specific material properties for the biomechanical behavior of ascending thoracic aneurysms. Ann. Biomed. Eng., 2015. doi:10.1007/s10439-015-1374-8.

  100. Turgay, E., S. Salcudean, and R. Rohling. Identifying the mechanical properties of tissue by ultrasound strain imaging. Ultrasound Med. Biol. 32:221–235, 2006.

    Article  PubMed  Google Scholar 

  101. Vavourakis V., J. H. Hipwell, and D. J. Hawkes. An inverse finite element u/p-formulation to predict the unloaded state of in vivo biological soft tissues. Ann. Biomed. Eng., 2015. doi:10.1007/s10439-015-1405-5.

  102. Verim, O., S. Tasgetiren, M. S. Er, M. Timur, and A. F. Yuran. Anatomical comparison and evaluation of human proximal femurs modeling via different devices and FEM analysis. Int. J. Med. Robot. Comput. Assist. Surg. 9:e19–e24, 2013.

    Article  Google Scholar 

  103. Viceconti, M., L. Bellingeri, L. Cristofolini, and A. Toni. A comparative study on different methods of automatic mesh generation of human femurs. Med. Eng. Phys. 20:1–10, 1998.

    Article  PubMed  CAS  Google Scholar 

  104. Vuskovic V. Device for in vivo measurement of mechanical properties of internal human soft tissues. PhD thesis, Technische Wissenschaften ETH Zürich, Dissertation No. 14222, 2001. http://e-collection.library.ethz.ch/eserv/eth:24411/eth-24411-02.pdf.

  105. Wang, R. K., S. Kirkpatrick, and M. Hinds. Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time. Appl. Phys. Lett. 90:164105, 2007.

    Article  Google Scholar 

  106. Wang Y., D.-C. Wong, and M. Zhang. Computational models of the foot and ankle for pathomechanics and clinical applications: a review. Ann. Biomed. Eng., 2015. doi:10.1007/s10439-015-1359-7.

  107. Warfield, S. K., S. J. Haker, I.-F. Talos, C. A. Kemper, N. Weisenfeld, U. J. Mewes, D. Goldberg-Zimring, K. H. Zou, C.-F. Westin, W. M. Wells, C. M. C. Tempany, A. Golby, P. M. Black, F. A. Jolesz, and R. Kikinis. Capturing intraoperative deformations: research experience at Brigham and Women’s hospital. Med. Image Anal. 9:145–162, 2005.

    Article  PubMed  Google Scholar 

  108. Wittek, A., G. Joldes, M. Couton, S. K. Warfield, and K. Miller. Patient-specific non-linear finite element modelling for predicting soft organ deformation in real-time; application to non-rigid neuroimage registration. Prog. Biophys. Mol. Biol. 103:292–303, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Wittek, A., G. Joldes, and K. Miller. Algorithms for Computational Biomechanics of the Brain. In: Biomechanics of the Brain, edited by K. Miller. New York: Springer, 2011, pp. 189–219.

    Chapter  Google Scholar 

  110. Wittek, A., K. Miller, R. Kikinis, and S. K. Warfield. Patient-specific model of brain deformation: application to medical image registration. J. Biomech. 40:919–929, 2007.

    Article  PubMed  Google Scholar 

  111. Wong, K. C. L., M. Sermesant, K. Rhode, M. Ginks, C. A. Rinaldi, R. Razavi, H. Delingette, and N. Ayache. Velocity-based cardiac contractility personalization from images using derivative-free optimization. J. Mech. Behav. Biomed. 43:35–52, 2015.

    Article  Google Scholar 

  112. Yang, K. H., and A. I. King. Modeling of the Brain for Injury Simulation and Prevention. In: Biomechanics of the Brain, edited by K. Miller. New York: Springer, 2011, pp. 91–110.

    Chapter  Google Scholar 

  113. Zhang, Y. J., Y. Bazilevs, S. Goswami, C. L. Bajaj, and T. J. R. Hughes. Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow. Comput. Methods Appl. Mech. Eng. 196:2943–2959, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Zhang, Y., T. J. R. Hughes, and C. L. Bajaj. An automatic 3D mesh generation method for domains with multiple materials. Comput. Methods Appl. Mech. Eng. 199:405–415, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Zhang, J. Y., G. R. Joldes, A. Wittek, and K. Miller. Patient-specific computational biomechanics of the brain without segmentation and meshing. Int. J. Numer. Methods Biomed. Eng. 29:293–308, 2013.

    Article  CAS  Google Scholar 

  116. Zhu F., B. Jiang, J. Hu, Y. Wang, M. Shen, and K. H. Yang. Computational modeling of traffic related thoracic injury of a 10-year-old child using subject-specific modeling technique. Ann. Biomed. Eng., 2015. doi:10.1007/s10439-015-1372-x.

Download references

Acknowledgments

This review would not be possible without the experience and information obtained in the studies supported by National Health and Medical Research Council (Grants No. APP1006031 and APP1063986) and Australian Research Council (Discovery Grants DP120100402 and DP1092893). N.M. Grosland and V. Magnotta acknowledge support of the award R01EB005973 from the National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health.

Conflict of interest

We have no conflict of interest to report in relation to this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Wittek.

Additional information

Associate Editor K. A. Athanasiou oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wittek, A., Grosland, N.M., Joldes, G.R. et al. From Finite Element Meshes to Clouds of Points: A Review of Methods for Generation of Computational Biomechanics Models for Patient-Specific Applications. Ann Biomed Eng 44, 3–15 (2016). https://doi.org/10.1007/s10439-015-1469-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1469-2

Keywords

Navigation