Skip to main content

Modeling of the Brain for Injury Simulation and Prevention

  • Chapter
  • First Online:
Biomechanics of the Brain

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

According to the U.S. Centers for Disease Control and Prevention, traumatic brain injury (TBI) is a serious public health issue affecting 1.7 million people annually in the United States. Approximately 50,000 deaths were related to TBI each year [1] and at least 5.3 million Americans are living with TBI-related disabilities [2]. The most common causes of TBI include violent assaults, transportation-associated incidents, construction, and sports-related events [3]. As little can be done to reverse the initial brain damage caused by trauma, preventing TBI from happening and stabilizing a TBI victim to prevent further injury are two key areas of research. A better understanding of the causation and mechanisms of TBI can provide advancement in both areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langlois, J.A., Rutland-Brown, W., Thomas, K.E.: Traumatic brain injury in the United States: Emergency Department Visits, Hospitalizations, and Deaths. Atlanta, GA: Dept. of Health and Human Services (US), Centers for Disease Control and Prevention, National Center for Injury Prevention and Control (2004)

    Google Scholar 

  2. Thurman, D.J., Alverson, C., Dunn, K.A., et al.: Traumatic brain injury in the United States: a public health perspective. J. Head Trauma Rehabil. 14(6), 602–615 (1999)

    Article  Google Scholar 

  3. Kushner, D.: Mild traumatic brain injury: toward understanding manifestations and treatment. Arch. Intern. Med. 158, 1617–1624 (1998)

    Article  Google Scholar 

  4. King, A.I., Yang, K.H., Zhang, L., et al.: Is head injury caused by linear or angular acceleration? Proceedings of the IRCOBI Conference, Lisbon, Portugal, 24–27 September 2003

    Google Scholar 

  5. Zhang, L., Dwarampudi, R., Yang, K.H., et al.: Effectiveness of the football helmet assessed by finite element modeling and impact testing. Proceedings of the 2003 IRCOBI Conference, Lisbon, Portugal, pp. 27–38, 24–27 September 2003

    Google Scholar 

  6. Rowson, S., Brolinson, G., Goforth, M., et al.: Linear and angular head acceleration measurements in collegiate football. J. Biomech. Eng. 131(6), 061016 (2009)

    Article  Google Scholar 

  7. Yang, K.H., Hu, J., White, N.A., et al.: Development of numerical models for injury biomechanics research: a review of 50 years of publications in the Stapp Car Crash Conference. Stapp Car Crash J. 50, 429–490 (2006)

    Google Scholar 

  8. Nahum, A.M., Smith, R., Ward, C.C.: Intracranial pressure dynamics during head impact. Proceedings of the 21st Stapp Car Crash Conference, SAE Paper No. 770922 (1977)

    Google Scholar 

  9. Trosseille, X., Tarriere, C., Lavaste, F., et al.: Development of a FEM of the human head according to a specific test protocol. Proceedings of the 30th Stapp Car Crash Conference, SAE 922527, pp. 235–253 (1992)

    Google Scholar 

  10. Hardy, W.N., Foster, C.D., Mason, M.J., et al.: Investigation of head injury mechanisms using neutral density technology and high-speed biplanar x-ray. Stapp Car Crash J. 45, 337–368 (2001)

    Google Scholar 

  11. Hardy, W.N., Mason, M.J., Foster, C.D., et al.: A study of the response of the human cadaver head to impact. Stapp Car Crash J. 51, 17–80 (2007)

    Google Scholar 

  12. Viano, D.C., Casson, I.R., Pellman, E.J., et al.: Concussion in professional football: brain responses by finite element analysis – part 9. J. Neurosurg. 57, 891–916 (2005)

    Article  Google Scholar 

  13. Marjoux, D., Baumgartner, D., Deck, C., et al.: Head injury prediction capability of the HIC, HIP, SIMon and ULP criteria. Accid. Anal. Prev. 40(3), 1135–1148 (2008)

    Article  Google Scholar 

  14. Kleiven, S.: Predictors for traumatic brain injuries evaluated through accident reconstructions. Stapp Car Crash J. 51, 81–114 (2007)

    Google Scholar 

  15. Franklyn, M., Fildes, B., Zhang, L., et al.: Analysis of finite element models for head injury investigation: reconstruction of four real-world impacts. Stapp Car Crash J. 49, 1–32 (2005)

    Google Scholar 

  16. Zhang, L., Yang, K.H., King, A.I.: A proposed new injury tolerance for mild traumatic brain injury. J. Biomech. Eng. 126, 226–236 (2004)

    Article  Google Scholar 

  17. Ruan, J., Prasad, P.: The effects of skull thickness variations on human head dynamic impact responses. Stapp Car Crash J. 45, 395–414 (2001)

    Google Scholar 

  18. Kabbani, H., Raghuveer, T.S.: Craniosynostosis. Am. Fam. Physician 69(12), 2863–2870 (2004)

    Google Scholar 

  19. Ward, C., Thompson, R.B.: The development of a detailed finite element brain model, 19th Stapp Car Crash Conference, San Diego, CA, USA, SAE 751163 (1975)

    Google Scholar 

  20. Li, J., Zhang, J., Yoganandan, N., et al.: Regional brain strains and role of falx in lateral impact-induced head rotational acceleration. Biomed. Sci. Instrum. 43, 24–29 (2007)

    Google Scholar 

  21. Haines, D.E., Harkey, H.L., Al-Mefty, O.: The “subdural” space: a new look at an outdated concept. Neurosurgery 32(1), 111–120 (1993)

    Article  Google Scholar 

  22. Cloots, R.J., Gervaise, H.M., van Dommelen, J.A., et al.: Biomechanics of traumatic brain injury: influences of the morphologic heterogeneities of the cerebral cortex. Ann. Biomed. Eng. 36(7), 1203–1215 (2008)

    Article  Google Scholar 

  23. Elkin, B.S., Azeloglu, E.U., Costa, K.D., et al.: Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation. J. Neurotrauma 24(5), 812–822 (2007)

    Article  Google Scholar 

  24. van Dommelen, J.A., van der Sande, T.P., Hrapko, M., et al.: Mechanical properties of brain tissue by indentation: interregional variation. J. Mech. Behav. Biomed. Mater. 3(2), 158–166 (2010)

    Article  Google Scholar 

  25. Gennarelli, T.A., Thibault, L.E.: Biomechanics of acute subdural hematoma. J. Trauma 22(8), 680–686 (1982)

    Article  Google Scholar 

  26. Maxeiner, H., Wolff, M.: Pure subdural hematomas: a postmortem analysis of their form and bleeding points. Neurosurgery 50, 503–509 (2002)

    Google Scholar 

  27. Lee, M.C., Haut, R.C.: Insensitivity of tensile failure properties of human bridging veins to strain rate: implications in biomechanics of subdural hematoma. J. Biomech. 22(6–7), 537–542 (1989)

    Article  Google Scholar 

  28. Löwenhielm, P.: Dynamic properties of the parasagittal bridging veins. Z. Rechtsmed. 74, 55–62 (1974)

    Article  Google Scholar 

  29. Ho, J., Kleiven, S.: Dynamic response of the brain with vasculature: a three-dimensional computational study. J. Biomech. 40(13), 3006–3012 (2007)

    Article  Google Scholar 

  30. Zhang, L., Bae, J., Hardy, W.N., et al.: Computational study of the contribution of the vasculature on the dynamic response of the brain. Stapp Car Crash J. 46, 145–164 (2002)

    Google Scholar 

  31. Serrador, J.M., Picot, P.A., Rutt, B.K., et al.: MRI measures of middle cerebral artery diameter in conscious humans during simulated orthostasis. Stroke 31(7), 1672–1678 (2000)

    Article  Google Scholar 

  32. MacNeal, R.H., Harder, R.L.: A proposed standard set of problems to test finite element accuracy. Finite Elem. Anal. Des. 1, 3–20 (1985)

    Article  Google Scholar 

  33. Hughes, T.J.R.: The Finite Element Method – Linear Static and Dynamic Finite Element Analysis, Chapter 4. Prentice-Hall, New Jersey (1987). ISBN 0-13-317025-X

    Google Scholar 

  34. Jin, X., Lee, J.B., Leung, L.Y., et al.: Biomechanical response of the bovine pia-arachnoid complex to tensile loading at varying strain-rates. Stapp Car Crash J. 50, 637–649 (2006)

    Google Scholar 

  35. Jin, X., Ma, C., Zhang, L., et al.: Biomechanical response of the bovine pia-arachnoid complex to normal traction loading at varying strain rates. Stapp Car Crash J. 51, 115–126 (2007)

    Google Scholar 

  36. Jin, X.: Biomechanical response and constitutive modeling of bovine pia-arachnoid complex. Ph.D. thesis, Wayne State University (2009)

    Google Scholar 

  37. Gurdjian, E.S., Webster, J.E.: Head Injuries, pp. 62–76. Little Brown, Boston (1958)

    Google Scholar 

  38. Gurdjian, E.S., Lissner, H.R., Hodgson, V.R., et al.: Mechanisms of head injury. Clin. Neurosurg. 12, 112–128 (1966)

    Google Scholar 

  39. Ommaya, A.K., Grubb, R.L., Naumann, R.A.: Coup and contrecoup injury: observations on the mechanics of visible brain injuries in the rhesus monkey. J. Neurosurg. 35, 503–516 (1971)

    Article  Google Scholar 

  40. Gennarelli, T.A., Adams, J.H., Graham, D.I.: Acceleration induced head injury in the monkey. I. The model, its mechanical and physiological correlates. Acta Neuropathol. Suppl. 7, 23–25 (1981)

    Google Scholar 

  41. Gennarelli, T.A., Thibault, L.E., Adams, J.H., Graham, D.I., Thompson, C.J., Marcincin, R.P.: Diffuse axonal injury and traumatic coma in the primate. Ann Neurol. 12(6), 564–574 (1982)

    Google Scholar 

  42. Bandak, F.A., Eppinger, R.H.: A three-dimensional finite element analysis of the human brain under combined rotational and translational accelerations. Proceedings of the 38th Stapp Car Crash Conference, Ft. Lauderdale, FL. SAE, Warrendale (1994)

    Google Scholar 

  43. Takhounts, E.G., Eppinger, R.H., Campbell, J.Q., et al.: On the development of the SIMon finite element head model. Stapp Car Crash J. 47, 107–133 (2003)

    Google Scholar 

  44. Shenkin, H.A.: Acute subdural hematoma. Review of 39 consecutive cases with high incidence of cortical artery rupture. J. Neurosurg. 57, 254–257 (1982)

    Article  Google Scholar 

  45. Gurdjian, E.S., Lissner, H.R., Latimer, F.R., et al.: Quantitative determination of acceleration and intracranial pressure in experimental head injury: preliminary report. Neurology 3(6), 417–423 (1953)

    Google Scholar 

  46. White, N.A., Begeman, P.C., Hardy, W.N., et al.: Investigation of upper body and cervical spine kinematics of post mortem human subjects (PMHS) during low-speed, rear-end impacts. SAE 2009 World Congress and Expo 2009-01-0387 (2009)

    Google Scholar 

  47. Igarashi, T., Potts, M.B., Noble-Haeusslein, L.J.: Injury severity determines Purkinje cell loss and microglial activation in the cerebellum after cortical contusion injury. Exp. Neurol. 203(1), 258–268 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to King H. Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yang, K.H., King, A.I. (2011). Modeling of the Brain for Injury Simulation and Prevention. In: Miller, K. (eds) Biomechanics of the Brain. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9997-9_5

Download citation

Publish with us

Policies and ethics