Skip to main content
Log in

Real-time damage analysis of 2D C/SiC composite based on spectral characters of acoustic emission signals using pattern recognition

基于声发射信号频谱特征的2D C/SiC复合材料损伤模式实时分析

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this study, unsupervised and supervised pattern recognition were implemented in combination to achieve real-time health monitoring. Unsupervised recognition (k-means++) was used to label the spectral characteristics of acoustic emission (AE) signals after completing the tensile tests at ambient temperature. Using in-plane tensile at 800 and 1000°C as implementing examples, supervised recognition (K-nearest neighbor (KNN)) was used to identify damage mode in real time. According to the damage identification results, four main tensile damage modes of 2D C/SiC composites were identified: matrix cracking (122.6–201 kHz), interfacial debonding (201–294.4 kHz), interfacial sliding (20.6–122.6 kHz) and fiber breaking (294.4–1000 kHz). Additionally, the damage evolution mechanisms for the 2D C/SiC composites were analyzed based on the characteristics of AE energy accumulation curve during the in-plane tensile loading at ambient and elevated temperature with oxidation. Meanwhile, the energy of various damage modes was accurately calculated by harmonic wavelet packet and the damage degree of modes could be analyzed. The identification results show that compared with previous studies, using the AE analysis method, the method has higher sensitivity and accuracy.

摘要

本研究将无监督模式识别与有监督模式识别相结合, 实现对材料健康状况的实时监测. 常温下完成拉伸试验后, 采用无监督识别(k-mean++)标记声发射(AE)信号的频谱特征. 以800和1000°C面内拉伸为实施例, 采用有监督识别(K近邻(KNN))对损伤模式进行实时识别. 根据损伤识别结果, 确定了二维C/SiC复合材料的4种主要拉伸损伤模式: 基体开裂(122.6~201 kHz)、界面脱粘(201~294.4 kHz)、界面滑移(20.6~122.6 kHz)和纤维断裂(294.4~1000 kHz). 根据二维C/SiC复合材料在常温和高温拉伸过程中的声发射能量积累曲线特征, 分析其损伤演化机制. 同时, 利用谐波小波包精确计算了各损伤模式的损伤能量和损伤程度. 识别结果表明, 与以往研究相比, 采用本声发射分析方法, 具有更高的损伤识别灵敏度和准确性.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Zhang, J. Ge, B. Zhang, C. He, Z. Wu, and J. Liang, Effect of thermal residual stress on the tensile properties and damage process of C/SiC composites at high temperatures, Ceram. Int. 48, 3109 (2022).

    Article  Google Scholar 

  2. M. Caccia, and J. Narciso, On the effects of hot spot formation during MW-assisted synthesis of Cf/SiC composites by reactive melt infiltration: Experimental simulations through high temperature treatments, J. Eur. Ceram. Soc. 40, 28 (2020).

    Article  Google Scholar 

  3. R. Xue, Z. Wang, Z. Zhang, N. Zhang, Y. Zhang, H. Xia, Z. Xiao, and J. Wang, Anisotropic tribological behavior of LSI based 2.5D needle-punched carbon fiber reinforced Cf/C-SiC composites, Ceram. Int. 48, 21324 (2022).

    Article  Google Scholar 

  4. M. Tian, X. Li, N. He, W. Hu, Y. Wei, H. Cai, C. Chen, C. Hu, and L. L. He, TEM study on the morphology and interfacial structure of Nb-coated Cf/SiC composite, Vacuum 199, 110973 (2022).

    Article  Google Scholar 

  5. D. Fang, W. Li, T. Cheng, Z. Qu, Y. Chen, R. Wang, and S. Ai, Review on mechanics of ultra-high-temperature materials, Acta Mech. Sin. 37, 1347 (2021).

    Article  MathSciNet  Google Scholar 

  6. J. Zhu, J. Deng, F. Chen, and F. Wang, Failure analysis of waterbearing rock under direct tension using acoustic emission, Eng. Geol. 299, 106541 (2022).

    Article  Google Scholar 

  7. G. N. Morscher, and R. Maxwell, Monitoring tensile fatigue crack growth and fiber failure around a notch in laminate SiC/SiC composites utilizing acoustic emission, electrical resistance, and digital image correlation, J. Eur. Ceram. Soc. 39, 229 (2019).

    Article  Google Scholar 

  8. G. Yong, X. Denghong, H. Tian, L. Ye, L. Naitian, Y. Quanhong, and W. Yanrong, Identification of damage mechanisms of carbon fiber reinforced silicon carbide composites under static loading using acoustic emission monitoring, Ceram. Int. 45, 13847 (2019).

    Article  Google Scholar 

  9. T. M. Ely, and E. V. K. Hill, Longitudinal splitting and fiber breakage characterization in graphite epoxy using acoustic emission data, Mater. Eval. 53, 288 (1995).

    Google Scholar 

  10. S. Barré, and M. L. Benzeggagh, On the use of acoustic emission to investigate damage mechanisms in glass-fibre-reinforced polypropylene, Compos. Sci. Tech. 52, 369 (1994).

    Article  Google Scholar 

  11. T. Uenoya, Acoustic emission analysis on interfacial fracture of laminated fabric polymer matrix composites, J. Acoust. Emiss. 13, 95 (1995).

    Google Scholar 

  12. J. Ma, Y. Xu, L. Zhang, L. Cheng, J. Nie, and N. Dong, Microstructure characterization and tensile behavior of 2.5D C/SiC composites fabricated by chemical vapor infiltration, Scripta Mater. 54, 1967 (2006).

    Article  Google Scholar 

  13. Y. Li, X. Liu, G. Chen, and C. Ren, Study on interfacial debonding stress and damage mechanisms of C/SiC composites using acoustic emission, Ceram. Int. 47, 4512 (2021).

    Article  Google Scholar 

  14. X. P. Huang, B. Wang, C. P. Yang, W. G. Pan, and X. Y. Liu, Evaluating damage evolution of three-dimension needled C/SiC composite based on acoustic emission signal analysis, J. Inorg. Mater. 33, 609 (2018).

    Article  Google Scholar 

  15. P. Fang, L. F. Cheng, L. T. Zhang, X. G. Luan, and H. Mei, Acoustic emission characteristic of C/SiC composite during creep at high temperature, Nondestr. Test. 30, 81 (2008).

    Google Scholar 

  16. Y. Wang, L. Zhang, and L. Cheng, Effects of heat treatment on the tensile behavior and damage evolution of a 3D C/SIC composite, Int. J. Mod. Phys. B 24, 2591 (2010).

    Article  Google Scholar 

  17. E. M. Strungar, A. S. Yankin, E. M. Zubova, A. V. Babushkin, and A. N. Dushko, Experimental study of shear properties of 3D woven composite using digital image correlation and acoustic emission, Acta Mech. Sin. 36, 448 (2020).

    Article  Google Scholar 

  18. M. Nazmdar Shahri, J. Yousefi, M. Fotouhi, and M. Ahmadi Najfabadi, Damage evaluation of composite materials using acoustic emission features and Hilbert transform, J. Composite Mater. 50, 1897 (2016).

    Article  Google Scholar 

  19. T. T. Assimakopoulou, and T. P. Philippidis, Health monitoring of composite structures based on acoustic emission measurements, Fatigue Life Prediction of Composites & Composite Structures, 466–504 (2010).

  20. Y. J. Chang, G. Q. Jiao, K. S. Zhang, and B. L. Wang, Investigation on tensile properties for 3D C/SiC composites by acoustic emission, Acta Mater. Compos. Sin. 27, 82 (2010).

    Google Scholar 

  21. F. Pashmforoush, M. Fotouhi, and M. Ahmadi, Acoustic emission-based damage classification of glass/polyester composites using harmony search k-means algorithm, J. Reinforced Plast. Compos. 31, 671 (2012).

    Article  Google Scholar 

  22. F. Pashmforoush, R. Khamedi, M. Fotouhi, M. Hajikhani, and M. Ahmadi, Damage classification of sandwich composites using acoustic emission technique and k-means genetic algorithm, J. Non-destruct. Eval. 33, 481 (2014).

    Article  Google Scholar 

  23. E. Pomponi, and A. Vinogradov, A real-time approach to acoustic emission clustering, Mech. Syst. Signal Process. 40, 791 (2013).

    Article  Google Scholar 

  24. M. Moevus, D. Rouby, N. Godin, M. R’Mili, P. Reynaud, G. Fantozzi, and G. Farizy, Analysis of damage mechanisms and associated acoustic emission in two SiC/[Si-B-C] composites exhibiting different tensile behaviours. Part I: Damage patterns and acoustic emission activity, Compos. Sci. Tech. 68, 1250 (2008).

    Article  Google Scholar 

  25. A. A. Anastassopoulos, and T. P. Philippidis, Clustering methodology for the evaluation of acoustic emission from composites, NDT E Int. 30, 108 (1997).

    Google Scholar 

  26. V. Kostopoulos, T. H. Loutas, A. Kontsos, G. Sotiriadis, and Y. Z. Pappas, On the identification of the failure mechanisms in oxide/oxide composites using acoustic emission, NDT E Int. 36, 571 (2003).

    Article  Google Scholar 

  27. N. Godin, S. Huguet, R. Gaertner, and L. Salmon, Clustering of acoustic emission signals collected during tensile tests on unidirectional glass/polyester composite using supervised and unsupervised classifiers, NDT E Int. 37, 253 (2004).

    Article  Google Scholar 

  28. Y. Z. Pappas, Y. P. Markopoulos, and V. Kostopoulos, Failure mechanisms analysis of 2D carbon/carbon using acoustic emission monitoring, NDT E Int. 31, 157 (1998).

    Article  Google Scholar 

  29. J. Li, G. Du, C. Jiang, and S. Jin, The classification of acoustic emission signals of 304 stainless steel during stress corrosion process based on K-means clustering, Anti-Corrosion Methods Mater. 59, 76 (2012).

    Article  Google Scholar 

  30. P. Jiang, L. Zhang, W. Li, and X. Wang, Pattern Recognition for Acoustic Emission Signals of Offshore Platform T-Tube Damage Based on K-means Clustering (Springer International Publishing, Cham, 2017).

    Book  Google Scholar 

  31. S. Menon, J. N. Schoess, R. Hamza, and D. Busch, Wavelet-based acoustic emission detection method with adaptive thresholding, Proc. SPIE — Int. Soc. Opt. Eng. 3986, 71 (2000).

    Google Scholar 

  32. Y. Kang, P. Ni, C. Fu, and P. Zhang, Estimation of damage location of rock based on denoised acoustic emission signals using wavelet packet algorithm, Geotech. Test. J. 40, 20170029 (2017).

    Article  Google Scholar 

  33. C. H. Jiang, L. S. Wang, W. You, and Z. X. Liu, in Research on acoustic emission signals de-noising based on translation invariant wavelet: Proceedings of 30th Annual Conference of IEEE, Busan, 2004, (IEEE, Piscataway, 2004), pp. 1775–1778.

    Google Scholar 

  34. D. L. Donoho, De-noising by soft-thresholding, IEEE Trans. Inform. Theor. 41, 613 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Dinmohammadpour, M. Nikkhah, K. Goshtasbi, and K. Ahangari, Application of wavelet transform in evaluating the Kaiser effect of rocks in acoustic emission test, Measurement 192, 110887 (2022).

    Article  Google Scholar 

  36. W. N. Lopes, P. O. C. Junior, P. R. Aguiar, F. A. Alexandre, F. R. L. Dotto, P. S. da Silva, and E. C. Bianchi, An efficient short-time Fourier transform algorithm for grinding wheel condition monitoring through acoustic emission, Int. J. Adv. Manuf. Technol. 113, 585 (2021).

    Article  Google Scholar 

  37. G. Kuşoğlukaya, P. Döloğlua, Ç. O. özer, Ocan Şahina, Ahmet Palazoglub, and Murat Külahçı, A study of spectral envelope method for Multi-Cause diagnosis using industrial data, Comput. Aided Chem. Eng. 50, 1331 (2021).

    Article  Google Scholar 

  38. M. Defdaf, F. Berrabah, A. Chebabhi, and B. D. E. Cherif, A new transform discrete wavelet technique based on artificial neural network for induction motor broken rotor bar faults diagnosis, Int. Trans. Electr. Energ. Syst. 31, (2021).

  39. J. H. Lee, A weighting function for improvement of spectral coherence based envelope spectrum, Mech. Syst. Signal Process. 160, 107929 (2021).

    Article  Google Scholar 

  40. C. Barile, C. Casavola, G. Pappalettera, and V. P. Kannan, Novel method of utilizing acoustic emission parameters for damage characterization in innovative materials, Procedia Struct. Integrity 24, 636 (2019).

    Article  Google Scholar 

  41. H. S. Kumar, and S. H. Manjunath, Use of empirical mode decomposition and K- nearest neighbour classifier for rolling element bearing fault diagnosis, Mater. Today-Proc. 52, 796 (2022).

    Article  Google Scholar 

  42. A. J. Gallego, J. R. Rico-Juan, and J. J. Valero-Mas, Efficient k-nearest neighbor search based on clustering and adaptive k values, Pattern Recogn. 122, 108356 (2022).

    Article  Google Scholar 

  43. D. O. Harris, and R. L. Bell, The measurement and significance of energy in acoustic-emission testing, Exp. Mech. 17, 347 (1977).

    Article  Google Scholar 

  44. R. Pan, T. Xu, and Y. Liu, The fault diagnosis method for roller bearing with harmonic wavelet packet and DT-SVM, Appl. Mech. Mater. 724, 238 (2015).

    Article  Google Scholar 

  45. R. Yan, and R. X. Gao, An efficient approach to machine health diagnosis based on harmonic wavelet packet transform, Robot. Comput.-Integr. Manuf. 21, 291 (2005).

    Article  Google Scholar 

  46. X. L. Zeng, Q. Deng, B. Wang, Z. L. Deng, X. D. Wang, and C. Y. Zhang, in The influence of rod waveguide on acoustic emission signal of different frequencies: Proceedings of World Conference on Acoustic Emission-2019, Guangzhou, (International Society on Acoustic Emission, Springer, 2021), pp. 487–501.

  47. Y. Zhang, X. Tong, L. Yao, B. Li, and G. Bai, Acoustic emission pattern recognition on tensile damage process of C/SiC composites using an improved genetic algorithm, J. Inorg. Mater. 35, 593 (2020).

    Article  Google Scholar 

  48. F. E. Oz, S. Ahmadvashaghbash, and N. Ersoy, Damage mode identification in transverse crack tension specimens using acoustic emission and correlation with finite element progressive damage model, Compos. Part B-Eng. 165, 84 (2019).

    Article  Google Scholar 

  49. Y. Xu, L. Cheng, and L. Zhang, Carbon/silicon carbide composites prepared by chemical vapor infiltration combined with silicon melt infiltration, Carbon 37, 1179 (1999).

    Article  Google Scholar 

  50. Y. P. Singh, R. Mansour, and G. N. Morscher, Combined acoustic emission and multiple lead potential drop measurements in detailed examination of crack initiation and growth during interlaminar testing of ceramic matrix composites, Compos. Part A-Appl. Sci. Manuf. 97, 93 (2017).

    Article  Google Scholar 

  51. F. Su, and P. Huang, Microscopic mechanism of the high-temperature strength behaviour of a C/SiC composite, Appl. Compos. Mater. 26, 1059 (2019).

    Article  Google Scholar 

  52. C. Labrugère, L. Guillaumat, A. Guette, and R. Naslain, Effect of ageing treatments at high temperatures on the microstructure and mechanical behaviour of 2D nicalon/C/SiC composites. 2: Ageing under CO and influence of a SiC seal-coating, J. Eur. Ceram. Soc. 17, 641 (1997).

    Article  Google Scholar 

  53. M. Ben Ameur, A. El Mahi, J. L. Rebiere, I. Gimenez, M. Beyaoui, M. Abdennadher, and M. Haddar, Investigation and identification of damage mechanisms of unidirectional carbon/flax hybrid composites using acoustic emission, Eng. Fract. Mech. 216, 106511 (2019).

    Article  Google Scholar 

  54. V. Arumugam, C. S. Kumar, C. Santulli, F. Sarasini, and A. J. Stanley, Identification of failure modes in composites from clustered acoustic emission data using pattern recognition and wavelet transformation, Arab. J. Sci. Eng. 38, 1087 (2013).

    Article  Google Scholar 

  55. K. Takashima, K. M. Fox, C. Barney, J. G. Pursell, and P. Bowen, Characterisation of acoustic emission signals during fracture and fatigue of SiC fibre reinforced titanium alloy composites, Mater. Sci. Tech. 12, 917 (1996).

    Article  Google Scholar 

  56. L. Li, S. V. Lomov, X. Yan, and V. Carvelli, Cluster analysis of acoustic emission signals for 2D and 3D woven glass/epoxy composites, Composite Struct. 116, 286 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 12172304) and the 111 Project (Grant No. BP0719007). We would like to thank the Analytical & Testing Center of Northwestern Polytechnical University for the help of microscopic morphology observation using scanning electron microscopy.

Author information

Authors and Affiliations

Authors

Contributions

Xianglong Zeng set up the experiment, processed the experiment data and wrote the first draft of the manuscript. Hongyan Shao and Rong Pan managed and coordinated responsibility for the research activity planning and execution. Bo Wang designed the research and acquired the financial support for the project leading to this publication. Tao Suo helped organize the manuscript. Qiong Deng and Chengyu Zhang revised and edited the final version.

Corresponding author

Correspondence to Bo Wang  (王波).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Shao, H., Pan, R. et al. Real-time damage analysis of 2D C/SiC composite based on spectral characters of acoustic emission signals using pattern recognition. Acta Mech. Sin. 38, 422177 (2022). https://doi.org/10.1007/s10409-022-22177-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22177-x

Navigation