Skip to main content
Log in

Evaluation of Progressive Damage and Identification of Failure Mechanisms in Carbon Fiber Woven Composites via Tensile Test

  • ACOUSTIC METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

Due to the widespread application of carbon fiber woven composites in aerospace, automobile and industrial area, understanding the damage evolution of carbon fiber woven composites are the most important aspect with respect to service life. Damage initiation and propagation of composites require greater mass force and little force can cause the failure of the structure on composite materials once exceeding the critical threshold at the onset of damage. A better knowledge of dynamic behaviors for damage growth can help to improve structural optimization design and production of high-performance composites. In this study, the mechanical behaviors of composites were analyzed under uniaxial tensile loading tests. Simultaneously, the chronology of internal damage evolution process in composite was detected by acoustic emission (AE). The AE signals recorded is filtered by the Maxmin Distance algorithm and following the k-means algorithm was used to achieve damage modes recognition. Based on microscopic observations and frequency range, the three clusters are correlated with different damage mode like matrix cracking, fiber/matrix debonding and fiber breakage. In addition, the Sentry Function (SF) affected by the mechanical behavior of the material was adopted to investigate evolution of the acoustic events and verify the results of clustering results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Vautard, F., Dentzer, J., Nardin, M., et al., Influence of surface defects on the tensile strength of carbon fibers, Appl. Surf. Sci., 2014, vol. 332, pp. 185–193.

    Article  Google Scholar 

  2. Harper, L.T., Turner, T.A., Martin, J.R.B., et al., Fiber alignment in directed carbon fiber preforms-mechanical property prediction, J. Compos. Mater., 2010, vol. 44, no. 8, pp. 931–951.

    Article  Google Scholar 

  3. Fernandes, H., Ibarra-Castanedo, C., Zhang, H., et al., Thermographic non-destructive evaluation of carbon fiber-reinforced polymer plates after tensile testing, J. Nondestr. Eval., 2015, vol. 34, no. 4, pp. 1–10.

    Article  Google Scholar 

  4. Montesano, J., Bougherara, H., and Fawaz, Z., Application of infrared thermography for the characterization of damage in braided carbon fiber reinforced polymer matrix composites, Composites, Part B, 2014, vol. 60, pp. 137–143.

    Article  CAS  Google Scholar 

  5. Zhou, W., Lv, Z.H., Li, Z.Y., et al., Acoustic emission response and micro-deformation behavior for compressive buckling failure of multi–delaminated composites, J. Strain Anal. Eng. Des., 2016, vol. 51, no. 6, pp. 397–407.

    Article  Google Scholar 

  6. Bussiba, A., Kupiec, M., Ifergane, S., et al., Damage evolution and fracture events sequence in various composites by acoustic emission technique, Compos. Sci. Technol., 2008, vol. 68, no. 5, pp. 1144–1155.

    CAS  Google Scholar 

  7. Carvelli, V., Pazmino, J., Lomov, S.V., et al., Quasi-static and fatigue tensile behavior of a 3D rotary braided carbon/epoxy composite, J. Compos. Mater., 2013, vol. 47, no. 25, pp. 3195–3210.

    Article  Google Scholar 

  8. Yoon, S.J., Chen, D.D., Han, S.W., et al., AE analysis of delamination crack propagation in carbon fiber-reinforced polymer materials, J. Mech. Sci. Technol., 2015, vol. 29, no. 1, pp. 17–21.

    Article  Google Scholar 

  9. Chen, O., Karandikar, P., Takeda, N., et al., Acoustic emission characterization of a glass-matrix composite, Nondestr. Test. Eval., 1992, vols. 8–9, nos. 1–6, pp. 869–878.

    Article  Google Scholar 

  10. Kumara, C.S., Arumugama, V., and Sengottuvelusamyb, R., Failure strength prediction of glass/epoxy composite laminates from acoustic emission parameters using artificial neural network, Appl. Acoust., 2017, vol. 115, pp. 32–41.

    Article  Google Scholar 

  11. Karahan, M., The effect of fibre volume fraction on damage initiation and propagation of woven carbon-epoxy multi–layer composites, Text. Res. J., 2012, vol. 82, pp. 45–61.

    Article  CAS  Google Scholar 

  12. Silversides, I., Maslouhi, A., and LaPlante, G., Acoustic emission monitoring of interlaminar delamination onset in carbon fibre composites, Struct. Health Monit., 2013, vol. 12, no. 2, pp. 126–140.

    Article  Google Scholar 

  13. Liu, P.F., Chu, J.K., Liu, Y.L., et al., A study on the failure mechanisms of carbon fiber/epoxy composite laminates using acoustic emission, Mater. Des., 2012, vol. 37, pp. 228–235.

    Article  CAS  Google Scholar 

  14. Crivelli, D., Guagliano, M., Eaton, M., et al., Localisation and identification of fatigue matrix cracking and delamination in a carbon fibre panel by acoustic emission, Composites, Part B, 2015, vol. 74, no. 1, pp. 1–12.

    Article  CAS  Google Scholar 

  15. McCrory, J.P., Al-Jumaili, S.K., Crivelli, D., et al., Damage classification in carbon fibre composites using acoustic emission: A comparison of three techniques, Composites, Part B, 2015, vol. 68, no. 5, pp. 424–430.

    Article  CAS  Google Scholar 

  16. Woo, S.C. and Kim, T.W., High strain-rate failure in carbon/Kevlar hybrid woven composites via a novel SHPB-AE coupled test, Composites, Part B, 2016, vol. 97, pp. 317–328.

    Article  CAS  Google Scholar 

  17. Li, L., Lomov, S.V., Xiong, Y., et al., Cluster analysis of acoustic emission signals for 2D and 3D woven glass/epoxy composites, Compos. Struct., 2014, vol. 116, no. 1, pp. 286–299.

    Article  Google Scholar 

  18. Monti, A., El Mahi, A., Jendli, Z., et al., Mechanical behaviour and damage mechanisms analysis of a flax-fibre reinforced composite by acoustic emission, Composites, Part A, 2016, vol. 90, pp. 100–110.

    Article  CAS  Google Scholar 

  19. Han, Z., Luo, H., Cao, J., et al., Acoustic emission during fatigue crack propagation in a micro-alloyed steel and welds, Mater. Sci. Eng. A, 2011, vol. 528, nos. 25–26, pp. 7751–7756.

    Article  CAS  Google Scholar 

  20. Li, L., Zhang, Z., and Shen, G., Influence of grain size on fatigue crack propagation and acoustic emission features in commercial–purity zirconium, Mater. Sci. Eng. A, 2015, vol. 636, pp. 35–42.

    Article  CAS  Google Scholar 

  21. Rabiei, M. and Modarres, M., Quantitative methods for structural health management using in situ acoustic emission monitoring, Int. J. Fatigue, 2013, vol. 49, pp. 81–89.

    Article  CAS  Google Scholar 

  22. Babu, M.R., and Prakash, T.V.B., Characterisation of fiber failure mode in T–700 carbon fiber reinforced epoxy composites by acoustic emission testing, Russ. J. Nondestr. Test., 2014, vol. 50, no. 1, pp. 45–57.

    Article  Google Scholar 

  23. Chai, M., Zhang, J., Zhang, Z., et al., Acoustic emission studies for characterization of fatigue crack growth in 316LN stainless steel and welds, Appl. Acoust., 2017, vol. 126, pp. 101–113.

    Article  Google Scholar 

  24. Yu, J., Ziehl, P., Zarate, B., et al., Prediction of fatigue crack growth in steel bridge components using acoustic emission, J. Constr. Steel Res., 2011, vol. 67, no. 8, pp. 1254–1260.

    Article  Google Scholar 

  25. Kostopoulos, V., Loutas, T.H., Kontsos, A., et al., On the identification of the failure mechanisms in oxide/oxide composites using acoustic emission, NDT&E Int., 2003, vol. 36, no. 8, pp. 571–580.

    Article  CAS  Google Scholar 

  26. Ullah, H., Harland, A.R., and Silberschmidt, V.V., Characterisation of mechanical behaviour and damage analysis of 2D woven composites under bending, Composites, Part B, 2015, vol. 75, pp. 156–166.

    Article  CAS  Google Scholar 

  27. Hatta, H., Goto, K., and Ikegaki, S., Tensile strength and fiber/matrix interfacial properties of 2D– and 3D–carbon/carbon composites, J. Eur. Ceram. Soc., 2005, vol. 25, no. 4, pp. 535–542.

    Article  CAS  Google Scholar 

  28. Gutkin, R., Green, C.J., Vangrattanachai, S., et al., On acoustic emission for failure investigation in CFRP: Pattern recognition and peak frequency analyses, Mech. Syst. Signal Process., 2011, vol. 25, no. 4, pp. 1393–1407.

    Article  Google Scholar 

  29. Groot, P.J.D., Wijnen, P.J.D., and Janssen, R.B.F., Real-time frequency determination of acoustic emission for different fracture mechanisms in carbon/epoxy composites, Compos. Sci. Technol., 1995, vol. 55, no. 4, pp. 405–412.

    Article  Google Scholar 

  30. Baccar, D. and Söffker, D., Identification and classification of failure modes in laminated composites by using a multivariate statistical analysis of wavelet coefficients, Mech. Syst. Signal Process., 2017, vol. 96, pp. 77–87.

    Article  Google Scholar 

  31. Lomov, S.V., Karahan, M., Bogdanovich, A.E., et al., Monitoring of acoustic emission damage during tensile loading of 3D woven carbon/epoxy composites, Text. Res. J., 2014, vol. 84, no. 13, pp. 1373–1384.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support of the Key Projects of Hebei Education Department (grant no. ZD2016097).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei Zhou, Zhang, Yn. & Zhao, Wz. Evaluation of Progressive Damage and Identification of Failure Mechanisms in Carbon Fiber Woven Composites via Tensile Test. Russ J Nondestruct Test 56, 222–233 (2020). https://doi.org/10.1134/S1061830920030134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830920030134

Keywords:

Navigation