Skip to main content
Log in

Viscoelastic characterization and prediction of a wormlike micellar solution

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

A Correction to this article was published on 17 August 2021

This article has been updated

Abstract

In the present paper, a structure-based viscoelastic model is employed to characterize and predict the viscoelastic properties of a wormlike micellar solution at 20 °C. Considering the effect of shear rate on linear viscoelastic property, a structural parameter f is obtained. Meanwhile, another structural parameter ζ is determined when the effects of time and shear rate are considered simultaneously. Both structural parameters are calculated by using linear interpolation method. The startup experiment can be described well by the model. The prediction on the shear stress in the ramping-up region of the hysteresis loop experiment shows an apparent relation between the rheological behaviors in the startup experiment and those in the hysteresis loop experiment. For the hysteresis loop experiment with 30 s time interval, the defect of the calculation in 0.001–0.01 s−1 is due to the lack of the ramping-down history effect. In addition, the model can improve completeness of perimental data used for characterizing rheological property.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Zhao, Y., Haward, S.J., Shen, A.Q.: Rheological characterizations of wormlike micellar solutions containing cationic surfactant and anionic hydrotropic salt. J. Rheol. 59, 1229–1259 (2015)

    Article  Google Scholar 

  2. Dai, S., Tao, M., Lu, H.: CO2-switchable wormlike micelles based on a switchable ionic liquid and tetradecyl trimethyl ammonium bromide. J. Disper. Sci. Technol. 42, 475–484 (2021)

    Article  Google Scholar 

  3. Dutta, S., Graham, M.D.: Mechanistic constitutive model for wormlike micelle solutions with flow induced structure formation. J. Non-Newton. Fluid Mech. 251, 97–106 (2018)

    Article  MathSciNet  Google Scholar 

  4. He, G., Liu, Y., Deng, X., et al.: Constitutive modeling of viscoelastic-viscoplastic behavior of short fiber reinforced polymers coupled with anisotropic damage and moisture effects. Acta Mech. Sin. 35, 495–506 (2019)

    Article  MathSciNet  Google Scholar 

  5. Johnson, M., Segalman, D.: A model for viscoelastic fluid behavior which allows non-affine deformation. J. Non-Newton. Fluid Mech. 2, 255–270 (1977)

    Article  Google Scholar 

  6. Fielding, S.M.: Linear instability of planar shear banded flow. Phys. Rev. Lett. 95, 134501 (2005)

    Article  Google Scholar 

  7. Olmsted, P.D.: Perspectives on shear banding in complex fluids. Rheol. Acta 47, 283–300 (2008)

    Article  Google Scholar 

  8. Giesekus, H.A.: Simple constitutive equation for polymer fluids based on the concept of the deformation dependent tensorial mobility. J. Non-Newton. Fluid Mech. 11, 69–109 (1982)

    Article  Google Scholar 

  9. Germann, N., Gurnon, A.K., Zhou, L., et al.: Validation of constitutive modeling of shear banding, threadlike wormlike micellar, fluids. J. Rheol. 60, 983–999 (2016)

    Article  Google Scholar 

  10. Vasquez, P.A., McKinley, G.H., Cook, L.P.: A network scission model for wormlike micellar solutions. I: Model formulation and homogeneous flow predictions. J. Non-Newton. Fluid Mech. 144, 122–139 (2007)

    Article  Google Scholar 

  11. Pipe, C.J., Kim, N.J., Vasquez, P.A., et al.: Wormlike micellar solutions. II: Comparison between experimental data and scission model predictions. J. Rheol. 54, 881–914 (2010)

    Article  Google Scholar 

  12. Zhou, L., McKinley, G.H., Cook, L.P.: Wormlike micellar solutions: III VCM model predictions in steady and transient shearing flows. J. Non-Newton. Fluid Mech. 211, 70–83 (2014)

    Article  Google Scholar 

  13. Germann, N., Cook, L.P., Beris, A.N.: Nonequilibrium thermodynamic modeling of the structure and rheology of concentrated wormlike micellar solutions. J. Non-Newton. Fluid Mech. 196, 51–57 (2013)

    Article  Google Scholar 

  14. Gaudino, D., Costanzo, S., Ianniruberto, G., et al.: Linear wormlike micelles behave similarly to entangled linear polymers in fast shear flows. J. Rheol. 64, 879–888 (2020)

    Article  Google Scholar 

  15. Becu, L., Manneville, S., Colin, A.: Spatiotemporal dynamics of wormlike micelles under shear. Phys. Rev. Lett. 93, 18301 (2004)

    Article  Google Scholar 

  16. Guettari, M., Naceur, I.B., Kassab, G., et al.: Temperature and concentration induced complex behavior in ternary microemulsion. Appl. Rheol. 23, 44966 (2013)

    Google Scholar 

  17. Chen, X.: Inclusion complex of β-cyclodextrin with CTAB in aqueous solution. Chin. J. Chem. Phys. 24, 484–488 (2011)

    Article  Google Scholar 

  18. Xiong, J., Fang, B., Lu, Y., et al.: Rheology and high-temperature stability of novel viscoelastic gemini micelle solutions. J. Disper. Sci. Technol. 39, 1324–1327 (2018)

    Article  Google Scholar 

  19. Shibaev, A.V., Molchanov, V.S., Philippova, O.E.: Rheological behavior of oil-swollen wormlike surfactant micelles. J. Phys. Chem. B 119, 15938–15946 (2015)

    Article  Google Scholar 

  20. Georgieva, G.S., Anachkov, S.E., Lieberwirth, I., et al.: Synergistic growth of giant wormlike micelles in ternary mixed surfactant solutions: effect of octanoic acid. Langmuir 32, 12885–12893 (2016)

    Article  Google Scholar 

  21. Zhang, W., Mao, J., Yang, X., et al.: Study of a novel gemini viscoelastic surfactant with high performance in clean fracturing fluid application. Polymers 10, 1215 (2018)

    Article  Google Scholar 

  22. Huang, S.: Structural viscoelasticity of a water-soluble polysaccharide extract. Int. J. Biol. Macromol. 120, 1601–1609 (2018)

    Article  Google Scholar 

  23. Bernstein, B., Kearsley, E.A., Zapas, L.J.: A study of stress relaxation with finite strain. Trans. Soc. Rheol. 7, 391–410 (1963)

    Article  Google Scholar 

  24. Wagner, M.H.: Analysis of time-dependent non-linear stress-growth data for shear and elongational flow of a low-density branched polyethylene melt. Rheol. Acta 15, 136–142 (1976)

    Article  Google Scholar 

  25. Osaki, K.: Non-linear viscoelasticity of polymer solutions. In: Klason, C., Kubat, J. (eds) Proceedings of the VIIth International Congress on Rheology. Gothenburg, Sweden, August 23–27, pp. 104–109 (1976)

  26. Laun, H.M.: Description of the non-linear shear behaviour of a low density polyethylene melt by means of an experimentally determined strain dependent memory function. Rheol. Acta 17, 1–15 (1978)

    Article  Google Scholar 

  27. Papanastasiou, A.C., Scriven, L.E., Macosko, C.W.: An integral constitutive equation for mixed flows: viscoelastic characterization. J. Rheol. 27, 387–410 (1983)

    Article  Google Scholar 

  28. Bird, R.B., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Fluids Fluid Mechanic, 2nd edn. Wiley, New York (1987)

    Google Scholar 

  29. Laun, H.M., Schmidt, G.: Rheotens tests and viscoelastic simulations related to high-speed spinning of polyamide 6. J. Non-Newton. Fluid Mech. 222, 45–55 (2015)

    Article  MathSciNet  Google Scholar 

  30. Huang, S.: Viscoelastic characterization of the mucus from the skin of loach. Korea-Aust. Rheol. J. 33, 1–9 (2021)

    Article  Google Scholar 

  31. Cox, W.P., Merz, E.H.: Correlation of dynamic and steady flow viscosities. J. Polym. Sci. 28, 619–622 (1958)

    Article  Google Scholar 

  32. Sharma, V., McKinley, G.H.: An intriguing empirical rule for computing the first normal stress difference from steady shear viscosity data for concentrated polymer solutions and melts. Rheol. Acta 51, 487–495 (2012)

    Article  Google Scholar 

  33. Osaki, K., Tamura, M., Kurata, M., et al.: Complex modulus of concentrated polymer solutions in steady shear. J. Phys. Chem. 69, 4183–4191 (1965)

    Article  Google Scholar 

  34. Macdonald, I., Bird, R.B.: Complex modulus of concentrated polymer solutions in steady shear. J. Phys. Chem. 70, 2068–2069 (1966)

    Article  Google Scholar 

  35. Kim, S.H., Mewis, J., Clasen, C., et al.: Superposition rheometry of a wormlike micellar fluid. Rheol. Acta 52, 727–740 (2013)

    Article  Google Scholar 

  36. Curtis, D.J., Davies, A.R.: On shear-rate dependent relaxation spectra in superposition rheometry: a basis for quantitative comparison/interconversion of orthogonal and parallel superposition moduli. J. Non-Newton Fluid Mech. 274, 104198 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuxin Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Executive Editor: Chao Sun.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 51 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S. Viscoelastic characterization and prediction of a wormlike micellar solution. Acta Mech. Sin. 37, 1648–1658 (2021). https://doi.org/10.1007/s10409-021-01120-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-021-01120-z

Keywords

Navigation