Skip to main content
Log in

Efficient algorithm for 3D bimodulus structures

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The bimodulus material is a classical model to describe the elastic behavior of materials with tension–compression asymmetry. Due to the inherently nonlinear properties of bimodular materials, traditional iteration methods suffer from low convergence efficiency and poor adaptability for large-scale structures in engineering. In this paper, a novel 3D algorithm is established by complementing the three shear moduli of the constitutive equation in principal stress coordinates. In contrast to the existing 3D shear modulus constructed based on experience, in this paper the shear modulus is derived theoretically through a limit process. Then, a theoretically self-consistent complemented algorithm is established and implemented in ABAQUS via UMAT; its good stability and convergence efficiency are verified by using benchmark examples. Numerical analysis shows that the calculation error for bimodulus structures using the traditional linear elastic theory is large, which is not in line with reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Medri, G.: A nonlinear elastic model for isotropic materials with different behavior in tension and compression. J. Eng. Mater. Technol. 104, 26–28 (1982)

    Article  Google Scholar 

  2. Qu, C.Z.: Deformation of geocell with different tensile and compressive modulus. J. Geotech. Geoenviron. 14, 1–14 (2009)

    Google Scholar 

  3. Du, Z.L., Zhang, Y.Z., Zhang, W., et al.: A new computational framework for materials with different mechanical responses in tension and compression and its applications. Int. J. Solids Struct. 100–101, 54–73 (2016)

    Article  Google Scholar 

  4. Ambartsumyan, S.A.: Elasticity theory of different moduli. China Railway Publishing House, Beijing (1986). (in Chinese)

    Google Scholar 

  5. Du, Z.L., Zhang, W.S., Zhang, Y.P., et al.: Structural topology optimization involving bi-modulus materials with asymmetric properties in tension and compression. Comput. Mech. 63, 335–363 (2019)

    Article  MathSciNet  Google Scholar 

  6. Zhang, Y.P.: High performance algorithm development for materials with different moduli in tension and compression and its application. [Master’s Thesis], Dalian University of Technology, Dalian (2016). (in Chinese)

  7. Timoshenko, S.: Strength of materials. Van Nostrand, Princeton (1941)

    MATH  Google Scholar 

  8. Ambartsumyan, S.A., Khachatryan, A.A.: Basic equations in the theory of elasticity for materials with different stiffness in tension and compression. Mech. Solids 1, 29–34 (1966)

    Google Scholar 

  9. Ambartsumyan, S.A., Khachartryan, A.A.: The basic equations and relations of the different-modulus theory of elasticity of an anisotropic body. Mech. Solids 4, 48–56 (1969)

    Google Scholar 

  10. Jones, R.M.: Stress-strain relations for materials with different moduli in tension and compression. AIAA J. 15, 16–23 (1977)

    Article  Google Scholar 

  11. Bert, C.W.: Models for fibrous composites with different properties in tension and compression. J. Eng. Mater. Technol. 99, 344 (1977)

    Article  Google Scholar 

  12. Bert, C.W., Gordaninejad, F.: Transverse shear effects in bimodular composite laminates. J. Compos. Mater. 17, 282–298 (1983)

    Article  Google Scholar 

  13. Vijayakumar, K., Rao, K.P.: Stress-strain relations for composites with different stiffnesses in tension and compression. Comput. Mech. 2, 167–175 (1987)

    Article  Google Scholar 

  14. He, X.T., Pei, X.X., Sun, J.Y., et al.: Simplified theory and analytical solution for functionally graded thin plates with different moduli in tension and compression. Mech. Res. Commun. 74, 72–80 (2016)

    Article  Google Scholar 

  15. Yao, W.J., Ye, Z.M.: Analytical solution for bending beam subject to lateral force with different modulus. Appl. Math. Mech. 25, 1107–1117 (2004)

    Article  Google Scholar 

  16. Du, Z.L., Guo, X.: Variational principles and the related bounding theorems for bi-modulus materials. J. Mech. Phys. Solids 73, 183–211 (2014)

    Article  MathSciNet  Google Scholar 

  17. Zhang, Y.Z., Wang, Z.F.: The finite element method for elasticity with different moduli in tension and compression. Comput. Struct. Mech. Appl. 6, 236–246 (1989). (in Chinese)

    Google Scholar 

  18. Yang, H.T., Wu, R.F., Yang, K.J., et al.: Solution to problem of dual extension compression elastic modulus with initial stress method. J. Dalian Univ. Technol. 32, 35–39 (1992). (in Chinese)

    Google Scholar 

  19. Liu, X.B., Zhang, Y.Z.: Modulus of elasticity in shear and accelerate convergence of different extension compression elastic modulus finite element method. J. Dalian Univ. Technol. 40, 527–530 (2000)

    MATH  Google Scholar 

  20. He, X.T., Zheng, Z.L., Sun, J.Y., et al.: Convergence analysis of a finite element method based on different moduli in tension and compression. Int. J. Solids Struct. 46, 3734–3740 (2009)

    Article  Google Scholar 

  21. Zhang, H.W., Zhang, L., Gao, Q.: An efficient computational method for mechanical analysis of bimodular structures based on parametric variational principle. Comput. Struct. 89, 2352–2360 (2011)

    Article  Google Scholar 

  22. Huang, T., Pan, Q.X., Jin, J., et al.: Continuous constitutive model for bimodulus materials with meshless approach. Appl. Math. Model. 66, 41–58 (2019)

    Article  MathSciNet  Google Scholar 

  23. Zhang, L., Zhang, H.W., Wu, J., et al.: A stabilized complementarity formulation for nonlinear analysis of 3D bimodular materials. Acta. Mech. Sin. 32, 481–490 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors highly appreciate Prof. X. Guo and Dr. Z.L. Du from Dalian University of Technology for helpful discussion and advice. This research was supported by the National Natural Science Foundation of China (Grant 51908071), Scientific Research Project of Education Department of Hunan Province (Grant 18C0194), and Open Fund of Key Laboratory of Road Structure and Material of Ministry of Transport, Changsha University of Science & Technology (Grant kfj170303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinxue Pan.

Appendices

Appendix A

1.1 Deduction of the constitutive equation Eq. (3)

The direction cosines obey the following relationships:

$$\left\{ {\begin{array}{*{20}l} {l_{1}^{2} + l_{2}^{2} + l_{3}^{2} { = }1,} \hfill & {l_{1} m_{1} + l_{2} m_{2} + l_{3} m_{3} = 0,} \hfill \\ {m_{1}^{2} + m_{2}^{2} + m_{3}^{2} = 1,} \hfill & {l_{1} n_{1} + l_{2} n_{2} + l_{3} n_{3} = 0,} \hfill \\ {n_{1}^{2} + n_{2}^{2} + n_{3}^{2} = 1,} \hfill & {m_{1} n_{1} + m_{2} n_{2} + m_{3} n_{3} = 0,} \hfill \\ {l_{1}^{2} + m_{1}^{2} + n_{1}^{2} { = }1,} \hfill & {l_{1} l_{2} + m_{1} m_{2} + n_{1} n_{2} = 0,} \hfill \\ {l_{2}^{2} + m_{2}^{2} + n_{2}^{2} { = }1,} \hfill & {l_{1} l_{3} + m_{1} m_{3} + n_{1} n_{3} = 0,} \hfill \\ {l_{3}^{2} + m_{3}^{2} + n_{3}^{2} { = }1,} \hfill & {l_{2} l_{3} + m_{2} m_{3} + n_{2} n_{3} = 0.} \hfill \\ \end{array} } \right.$$
(A.1)

The strain components in one coordinate system are given as

$$\left\{ \begin{aligned} \varepsilon_{x} \;\; = l_{1}^{2} \varepsilon_{\alpha } + m_{1}^{2} \varepsilon_{\beta } + n_{1}^{2} \varepsilon_{\gamma } \;\;,\;\;\;\gamma_{xy} = 2(l_{1} l_{2} \varepsilon_{\alpha } + m_{1} m_{2} \varepsilon_{\beta } + n_{1} n_{2} \varepsilon_{\gamma } ), \hfill \\ \varepsilon_{y} \;\; = l_{2}^{2} \varepsilon_{\alpha } + m_{2}^{2} \varepsilon_{\beta } + n_{2}^{2} \varepsilon_{\gamma } \;\;,\;\;\;\gamma_{yz} = 2(l_{2} l_{3} \varepsilon_{\alpha } + m_{2} m_{3} \varepsilon_{\beta } + n_{2} n_{3} \varepsilon_{\gamma } ), \hfill \\ \varepsilon_{z} \;\; = l_{3}^{2} \varepsilon_{\alpha } + m_{3}^{2} \varepsilon_{\beta } + n_{3}^{2} \varepsilon_{\gamma } \;\;,\;\;\;\gamma_{xz} = 2(l_{1} l_{3} \varepsilon_{\alpha } + m_{1} m_{3} \varepsilon_{\beta } + n_{1} n_{3} \varepsilon_{\gamma } ). \hfill \\ \end{aligned} \right.$$
(A.2)

Substitution of Eq. (1) into the constitutive Eq. (A.2) yields

$$\begin{aligned} \varepsilon_{x} & = l_{1}^{2} \varepsilon_{\alpha } + m_{1}^{2} \varepsilon_{\beta } + n_{1}^{2} \varepsilon_{\gamma } \\ & = l_{1}^{2} \left( {a_{11} \sigma_{\alpha } + a_{12} \sigma_{\beta } + a_{13} \sigma_{\gamma } } \right) + m_{1}^{2} \left( {a_{21} \sigma_{\alpha } + a_{22} \sigma_{\beta } + a_{23} \sigma_{\gamma } } \right) + n_{1}^{2} \left( {a_{31} \sigma_{\alpha } + a_{32} \sigma_{\beta } + a_{33} \sigma_{\gamma } } \right) \\ & = \left( {a_{11} l_{1}^{2} + a_{21} m_{1}^{2} + a_{31} n_{1}^{2} } \right)\sigma_{\alpha } + \left( {a_{12} l_{1}^{2} + a_{22} m_{1}^{2} + a_{32} n_{1}^{2} } \right)\sigma_{\beta } + \left( {a_{13} l_{1}^{2} + a_{23} m_{1}^{2} + a_{33} n_{1}^{2} } \right)\sigma_{\gamma } \\ & = a_{11} \left( {l_{1}^{2} \sigma_{\alpha } + m_{1}^{2} \sigma_{\beta } + n_{1}^{2} \sigma_{\gamma } } \right) + a_{22} \left( {l_{1}^{2} \sigma_{\alpha } + m_{1}^{2} \sigma_{\beta } + n_{1}^{2} \sigma_{\gamma } } \right) + a_{33} \left( {l_{1}^{2} \sigma_{\alpha } + m_{1}^{2} \sigma_{\beta } + n_{1}^{2} \sigma_{\gamma } } \right) \\ & \quad - \left[ {l_{1}^{2} \left( {a_{22} + a_{33} } \right)\sigma_{\alpha } + m_{1}^{2} \left( {a_{11} + a_{33} } \right)\sigma_{\beta } + n_{1}^{2} \left( {a_{11} + a_{22} } \right)\sigma_{\gamma } } \right] \\ & \quad + \left[ {\left( {a_{21} m_{1}^{2} + a_{31} n_{1}^{2} } \right)\sigma_{\alpha } + \left( {a_{12} l_{1}^{2} + a_{32} n_{1}^{2} } \right)\sigma_{\beta } + \left( {a_{13} l_{1}^{2} + a_{23} m_{1}^{2} } \right)\sigma_{\gamma } } \right] \\ & = \left( {a_{11} + a_{22} + a_{33} } \right)\sigma_{x} - \left( {a_{11} + a_{22} + a_{33} } \right)\left( {l_{1}^{2} \sigma_{\alpha } + m_{1}^{2} \sigma_{\beta } + n_{1}^{2} \sigma_{\gamma } } \right) + a_{11} l_{1}^{2} \sigma_{\alpha } + a_{22} m_{1}^{2} \sigma_{\beta } + a_{33} n_{1}^{2} \sigma_{\gamma } \\ & \quad + \left[ {\left( {m_{1}^{2} + n_{1}^{2} } \right)a_{21} \sigma_{\alpha } + \left( {l_{1}^{2} + n_{1}^{2} } \right)a_{12} \sigma_{\beta } + \left( {l_{1}^{2} + m_{1}^{2} } \right)a_{13} \sigma_{\gamma } } \right] \\ & = a_{11} l_{1}^{2} \sigma_{\alpha } + a_{22} m_{1}^{2} \sigma_{\beta } + a_{33} n_{1}^{2} \sigma_{\gamma } - a_{21} l_{1}^{2} \sigma_{\alpha } - a_{12} m_{1}^{2} \sigma_{\beta } - a_{13} n_{1}^{2} \sigma_{\gamma } + a_{21} \sigma_{\alpha } + a_{12} \sigma_{\beta } + a_{13} \sigma_{\gamma } \\ & = \left( {a_{11} - a_{21} } \right)l_{1}^{2} \sigma_{\alpha } + \left( {a_{22} - a_{12} } \right)m_{1}^{2} \sigma_{\beta } + \left( {a_{33} - a_{13} } \right)n_{1}^{2} \sigma_{\gamma } + a_{21} \sigma_{\alpha } + a_{12} \sigma_{\beta } + a_{13} \sigma_{\gamma } \\ & = \frac{{l_{1}^{2} \sigma_{\alpha } }}{{2G_{\alpha } }} + \frac{{m_{1}^{2} \sigma_{\beta } }}{{2G_{\beta } }} + \frac{{n_{1}^{2} \sigma_{\gamma } }}{{2G_{\gamma } }} + a_{21} \sigma_{\alpha } + a_{12} \sigma_{\beta } + a_{13} \sigma_{\gamma } , \\ \end{aligned}$$
$$\begin{aligned} \gamma_{xy} & = 2\left( {l_{1} l_{2} \varepsilon_{\alpha } + m_{1} m_{2} \varepsilon_{\beta } + n_{1} n_{2} \varepsilon_{\gamma } } \right) \\ & = 2\left[ {l_{1} l_{2} \left( {a_{11} \sigma_{\alpha } { + }a_{12} \sigma_{\beta } { + }a_{13} \sigma_{\gamma } } \right) + m_{1} m_{2} \left( {a_{21} \sigma_{\alpha } + a_{22} \sigma_{\beta } { + }a_{23} \sigma_{\gamma } } \right) + n_{1} n_{2} \left( {a_{31} \sigma_{\alpha } { + }a_{32} \sigma_{\beta } + a_{33} \sigma_{\gamma } } \right)} \right] \\ & = 2\left[ {\left( {a_{11} l_{1} l_{2} { + }a_{21} m_{1} m_{2} { + }a_{31} n_{1} n_{2} } \right)\sigma_{\alpha } + \left( {a_{12} l_{1} l_{2} + a_{22} m_{1} m_{2} { + }a_{32} n_{1} n_{2} } \right)\sigma_{\beta } + \left( {a_{13} l_{1} l_{2} { + }a_{23} m_{1} m_{2} + a_{33} n_{1} n_{2} } \right)\sigma_{\gamma } } \right] \\ & { = }\,2\left\{ \begin{aligned} & a_{11} \left( {l_{1} l_{2} \sigma_{\alpha } + m_{1} m_{2} \sigma_{\beta } + n_{1} n_{2} \sigma_{\gamma } } \right) + a_{22} \left( {l_{1} l_{2} \sigma_{\alpha } + m_{1} m_{2} \sigma_{\beta } + n_{1} n_{2} \sigma_{\gamma } } \right) \hfill \\ &+ a_{33} \left( {l_{1} l_{2} \sigma_{\alpha } + m_{1} m_{2} \sigma_{\beta } + n_{1} n_{2} \sigma_{\gamma } } \right) \hfill \\ &- \left[ {l_{1} l_{2} (a_{22} + a_{33} )\sigma_{\alpha } + m_{1} m_{2} (a_{11} + a_{33} )\sigma_{\beta } + n_{1} n_{2} (a_{11} + a_{22} )\sigma_{\gamma } } \right] \hfill \\ &{ + }\left[ {(a_{21} m_{1} m_{2} + a_{31} n_{1} n_{2} )\sigma_{\alpha } + (a_{12} l_{1} l_{2} + a_{32} n_{1} n_{2} )\sigma_{\beta } + (a_{13} l_{1} l_{2} + a_{23} m_{1} m_{2} )\sigma_{\gamma } } \right] \hfill \\ \end{aligned} \right\} \\ & = 2\left\{ \begin{aligned} & (a_{11} + a_{22} + a_{33} )\tau_{xy} - (a_{11} + a_{22} + a_{33} )(l_{1} l_{2} \sigma_{\alpha } + m_{1} m_{2} \sigma_{\beta } + n_{1} n_{2} \sigma_{\gamma } ) \hfill \\& + a_{11} l_{1} l_{2} \sigma_{\alpha } + a_{22} m_{1} m_{2} \sigma_{\beta } + a_{33} n_{1} n_{2} \sigma_{\gamma } \hfill \\& { + }\left[ {(m_{1} m_{2} + n_{1} n_{2} )a_{21} \sigma_{\alpha } + (l_{1} l_{2} + n_{1} n_{2} )a_{12} \sigma_{\beta } + (l_{1} l_{2} + m_{1} m_{2} )a_{13} \sigma_{\gamma } } \right] \hfill \\ \end{aligned} \right\} \\ & = 2\left( {a_{11} l_{1} l_{2} \sigma_{\alpha } + a_{22} m_{1} m_{2} \sigma_{\beta } + a_{33} n_{1} n_{2} \sigma_{\gamma } - a_{21} l_{1} l_{2} \sigma_{\alpha } - a_{12} m_{1} m_{2} \sigma_{\beta } - a_{13} n_{1} n_{2} \sigma_{\gamma } } \right) \\ & = 2(a_{11} - a_{21} )l_{1} l_{2} \sigma_{\alpha } + 2(a_{22} - a_{12} )m_{1} m_{2} \sigma_{\beta } + 2(a_{33} - a_{13} )n_{1} n_{2} \sigma_{\gamma } \\ & = \frac{{l_{1} l_{2} \sigma_{\alpha } }}{{G_{\alpha } }} + \frac{{m_{1} m_{2} \sigma_{\beta } }}{{G_{\beta } }} + \frac{{n_{1} n_{2} \sigma_{\gamma } }}{{G_{\gamma } }}. \\ \end{aligned}$$

Similarly, the remaining equations can be obtained in the same way.

Appendix B

2.1 The ratios \(l_{2} /m_{1}\), \(m_{3} /n_{2}\), and \(n_{1} /l_{3}\)

Note that the direction cosines satisfy the following equations:

$$\begin{array}{*{20}l} {l_{1} m_{1} + l_{2} m_{2} + l_{3} m_{3} = 0,} \hfill \\ {l_{1} n_{1} + l_{2} n_{2} + l_{3} n_{3} = 0,} \hfill \\ {m_{1} n_{1} + m_{2} n_{2} + m_{3} n_{3} = 0} \hfill \\ {l_{1} l_{2} + m_{1} m_{2} + n_{1} n_{2} = 0,} \hfill \\ {l_{1} l_{3} + m_{1} m_{3} + n_{1} n_{3} = 0,} \hfill \\ {l_{2} l_{3} + m_{2} m_{3} + n_{2} n_{3} = 0.} \hfill \\ \end{array}$$
(B.1)

When l1, m2, n3 → 1; l2, l3, m1, m3, n1, n2 → 0, we have

$$\begin{array}{*{20}l} {m_{1} + l_{2} + l_{3} m_{3} = 0,} \hfill & {\left( a \right)} \hfill \\ {n_{1} + l_{2} n_{2} + l_{3} = 0,} \hfill & {\left( b \right)} \hfill \\ {m_{1} n_{1} + n_{2} + m_{3} = 0,} \hfill & {\left( c \right)} \hfill \\ {l_{2} + m_{1} + n_{1} n_{2} = 0,} \hfill & {\left( d \right)} \hfill \\ {l_{3} + m_{1} m_{3} + n_{1} = 0,} \hfill & {\left( e \right)} \hfill \\ {l_{2} l_{3} + m_{3} + n_{2} = 0.} \hfill & {\left( f \right)} \hfill \\ \end{array}$$
(B.2)

From Eqs. (a) and (d) in (B.2), we have

$$l_{3} m_{3} = n_{1} n_{2} \;\;\;\; \Rightarrow \;\;\;m_{3} /n_{2} = n_{1} /l_{3},$$
(B.3)

and from Eqs (b) (c) in (B.2), it is obvious that

$$l_{2} n_{2} = m_{1} m_{3} \;\;\; \Rightarrow \;\;\;l_{2} /m_{1} = m_{3} /n_{2} .$$
(B.4)

Similarly, from Eqs. (e) and (f) in (B.2), one has

$$l_{2} l_{3} = m_{1} n_{1} \;\;\; \Rightarrow l_{2} /m_{1} = n_{1} /l_{3} .$$
(B.5)

Combining Eqs. (B.3)–(B.5) and letting \(\mathop {\lim }\limits_{\begin{subarray}{l} \;\;\;\;\;\;\;l_{1} ,m_{2} ,n_{3} \to 1 \\ l_{2} ,l_{3,} m_{1} ,m_{3} ,n_{1} ,n_{2} \to 0 \end{subarray} } l_{2} /m_{1} = k\), we have

$$\mathop {\lim }\limits_{\begin{subarray}{l} \;\;\;\;\;\;\;l_{1} ,m_{2} ,n_{3} \to 1 \\ l_{2} ,l_{3,} m_{1} ,m_{3} ,n_{1} ,n_{2} \to 0 \end{subarray} } l_{2} /m_{1} = m_{3} /n_{2} = n_{1} /l_{3} = k.$$
(B.6)

From Eqs. (B.3) to (B.6), it can be seen that the three shear moduli have similar form to k. Consider

$$\begin{array}{*{20}l} {l_{1}^{2} + l_{2}^{2} + l_{3}^{2} { = }1,} \hfill & {\left( {a'} \right)} \hfill \\ {m_{1}^{2} + m_{2}^{2} + m_{3}^{2} = 1,} \hfill & {\left( {b'} \right)} \hfill \\ {n_{1}^{2} + n_{2}^{2} + n_{3}^{2} = 1,} \hfill & {\left( {c'} \right)} \hfill \\ {l_{1}^{2} + m_{1}^{2} + n_{1}^{2} { = }1,} \hfill & {\left( {d'} \right)} \hfill \\ {l_{2}^{2} + m_{2}^{2} + n_{2}^{2} { = }1,} \hfill & {\left( {e'} \right)} \hfill \\ {l_{3}^{2} + m_{3}^{2} + n_{3}^{2} { = }1.} \hfill & {\left( {f'} \right)} \hfill \\ \end{array}$$
(B.7)

Equations (a′) and (d′) give

$$l_{2}^{2} + l_{3}^{2} = m_{1}^{2} + n_{1}^{2} .$$

Substitution of Eq. (B.6) into the above equation yields

$$(k^{2} - 1)m_{1}^{2} = (k^{2} - 1)l_{3}^{2} .$$

Thus

$$k^{2} = 1\,or\,m_{1}^{2} = l_{3}^{2} .$$
(B.8)

Similarly, from Eqs. (b′) and (e′), we have

$$k^{2} = 1\,or\,m_{1}^{2} = n_{2}^{2}$$
(B.9)

and from Eqs. (c′) and (f′)

$$k^{2} = 1\,or\,l_{3}^{2} = n_{2}^{2} .$$
(B.10)

Combining Eqs. (a′) and (e′) and taking the limits, we obtain

$$l_{3}^{2} = n_{2}^{2} .$$
(B.11)

Similarly, from Eqs. (a′) and (f),

$$l_{2}^{2} = m_{3}^{2},$$
(B.12)

and from Eqs. (b′) and (d′) and from Eqs. (b′) and (f′),

$$n_{1}^{2} = m_{3}^{2} ,$$
(B.13)
$$m_{1}^{2} = l_{3}^{2} .$$
(B.14)

Also, from Eqs. (c′) and (d′) and from Eqs. (c′) and (e′), one has

$$m_{1}^{2} = n_{2}^{2} ,$$
(B.15)
$$n_{1}^{2} = l_{2}^{2} .$$
(B.16)

Considering Eq. (B.6), Eqs. (B.8)–(B.16) yield

$$\begin{aligned} m_{1}^{2} = l_{3}^{2} = n_{2}^{2} , \hfill \\ l_{2}^{2} = n_{1}^{2} = m_{3}^{2} . \hfill \\ \end{aligned}$$
(B.17)

It can be seen from the above formula that the direction cosines have the same signs (positive or negative) or different signs at the same time. l3, m1, and n2 are infinitesimally small quantities of the same order, as are l2, n1, and m3. In addition, the limit can be obtained as

$$\begin{aligned} \mathop {\lim }\limits_{\begin{subarray}{l} \;\;\;\;\;\;\;l_{1} ,m_{2} ,n_{3} \to 1 \\ l_{2} ,l_{3,} m_{1} ,m_{3} ,n_{1} ,n_{2} \to 0 \end{subarray} } \tau_{xy} & = \mathop {\lim }\limits_{\begin{subarray}{l} \;\;\;\;\;\;\;l_{1} ,m_{2} ,n_{3} \to 1 \\ l_{2} ,l_{3,} m_{1} ,m_{3} ,n_{1} ,n_{2} \to 0 \end{subarray} } l_{1} l_{2} \sigma_{\alpha } + m_{1} m_{2} \sigma_{\beta } + n_{1} n_{2} \sigma_{\gamma } \\ & = \mathop {\lim }\limits_{\begin{subarray}{l} \;\;\;\;\;\;\;l_{1} ,m_{2} ,n_{3} \to 1 \\ l_{2} ,l_{3,} m_{1} ,m_{3} ,n_{1} ,n_{2} \to 0 \end{subarray} } l_{2} \sigma_{\alpha } + m_{1} \sigma_{\beta } + n_{1} n_{2} \sigma_{\gamma } \\ & { = }\mathop {\lim }\limits_{\begin{subarray}{l} \;\;\;\;\;\;\;l_{1} ,m_{2} ,n_{3} \to 1 \\ l_{2} ,l_{3,} m_{1} ,m_{3} ,n_{1} ,n_{2} \to 0 \end{subarray} } l_{2} \sigma_{\alpha } + m_{1} \sigma_{\beta } . \\ \end{aligned}$$
(B.18)

As the shear stress is zero on the principal stress surface, i.e.,

$$\tau_{\alpha \beta } = l_{1} m_{1} \sigma_{x} + l_{2} m_{2} \sigma_{y} + l_{3} m_{3} \sigma_{z} + (l_{1} m_{2} + l_{2} m_{1} )\tau_{xy} + (l_{2} m_{3} + l_{3} m_{2} )\tau_{yz} + (l_{1} m_{3} + l_{3} m_{3} )\tau_{zx} { = }0,$$
(B.19)
$$\begin{aligned} & \mathop {\lim }\limits_{\begin{subarray}{l} \;\;\;\;\;\;\;l_{1} ,m_{2} ,n_{3} \to 1 \\ l_{2} ,l_{3,} m_{1} ,m_{3} ,n_{1} ,n_{2} \to 0 \end{subarray} } l_{1} m_{1} \sigma_{x} + l_{2} m_{2} \sigma_{y} + l_{3} m_{3} \sigma_{z} + (l_{1} m_{2} + l_{2} m_{1} )\tau_{xy} + (l_{2} m_{3} + l_{3} m_{2} )\tau_{yz} + (l_{1} m_{3} + l_{3} m_{3} )\tau_{zx} \\ & { = }\mathop {\lim }\limits_{\begin{subarray}{l} \;\;\;\;\;\;\;l_{1} ,m_{2} ,n_{3} \to 1 \\ l_{2} ,l_{3,} m_{1} ,m_{3} ,n_{1} ,n_{2} \to 0 \end{subarray} } m_{1} \sigma_{x} + l_{2} \sigma_{y} + l_{3} m_{3} \sigma_{z} + (1 + l_{2} m_{1} )\tau_{xy} + (l_{2} m_{3} + l_{3} )\tau_{yz} + (m_{3} + l_{3} m_{3} )\tau_{zx} \\ & = \mathop {\lim }\limits_{\begin{subarray}{l} \;\;\;\;\;\;\;l_{1} ,m_{2} ,n_{3} \to 1 \\ l_{2} ,l_{3,} m_{1} ,m_{3} ,n_{1} ,n_{2} \to 0 \end{subarray} } m_{1} \sigma_{\alpha } + l_{2} \sigma_{\beta } + l_{3} m_{3} \sigma_{\gamma } + \tau_{xy} + l_{3} \tau_{yz} + m_{3} \tau_{xz} \\ & = \mathop {\lim }\limits_{\begin{subarray}{l} \;\;\;\;\;\;\;l_{1} ,m_{2} ,n_{3} \to 1 \\ l_{2} ,l_{3,} m_{1} ,m_{3} ,n_{1} ,n_{2} \to 0 \end{subarray} } m_{1} \sigma_{\alpha } + l_{2} \sigma_{\beta } + l_{3} m_{3} \sigma_{\gamma } + \tau_{xy} \\ & { = }\mathop {\lim }\limits_{\begin{subarray}{l} \;\;\;\;\;\;\;l_{1} ,m_{2} ,n_{3} \to 1 \\ l_{2} ,l_{3,} m_{1} ,m_{3} ,n_{1} ,n_{2} \to 0 \end{subarray} } m_{1} \sigma_{\alpha } + l_{2} \sigma_{\beta } + \tau_{xy} { = }0. \\ \end{aligned}$$
(B.20)

Then, it can be obtained from Eqs. (B.19) and (B.20) that

$$\mathop {\lim }\limits_{\begin{subarray}{l} \;\;\;\;\;\;\;l_{1} ,m_{2} ,n_{3} \to 1 \\ l_{2} ,l_{3,} m_{1} ,m_{3} ,n_{1} ,n_{2} \to 0 \end{subarray} } m_{1} \sigma_{\alpha } + l_{2} \sigma_{\beta } = - \tau_{xy}.$$
(B.21)

Combining Eqs. (B.18) and (B.21) yields

$$l_{2} \sigma_{\alpha } + m_{1} \sigma_{\beta } = - m_{1} \sigma_{\alpha } - l_{2} \sigma_{\beta } .$$

Therefore, we have

$$(l_{2} + m_{1} )(\sigma_{\alpha } + \sigma_{\beta } ) = 0.$$
(B.22)

Since the above equation is true for any magnitude principal stresses \(\sigma_{\alpha }\) and \(\sigma_{\beta }\), one has\(\mathop {\lim }\limits_{\begin{subarray}{l} \;\;\;\;\;\;\;l_{1} ,m_{2} ,n_{3} \to 1 \\ l_{2} ,l_{3,} m_{1} ,m_{3} ,n_{1} ,n_{2} \to 0 \end{subarray} } l_{2} + m_{1} = 0,\)which leads to

$$\mathop {\lim }\limits_{\begin{subarray}{l} \;\;\;\;\;\;\;l_{1} ,m_{2} ,n_{3} \to 1 \\ l_{2} ,l_{3,} m_{1} ,m_{3} ,n_{1} ,n_{2} \to 0 \end{subarray} } l_{2} /m_{1} = - 1.$$
(B.23)

In the same way, we have

$$\mathop {\lim }\limits_{\begin{subarray}{l} \;\;\;\;\;\;\;l_{1} ,m_{2} ,n_{3} \to 1 \\ l_{2} ,l_{3,} m_{1} ,m_{3} ,n_{1} ,n_{2} \to 0 \end{subarray} } m_{3} /n_{2} = l_{3} /n_{1} = - 1.$$
(B.24)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Q., Zheng, J. & Wen, P. Efficient algorithm for 3D bimodulus structures. Acta Mech. Sin. 36, 143–159 (2020). https://doi.org/10.1007/s10409-019-00909-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-019-00909-3

Keywords

Navigation