Skip to main content
Log in

Smooth hyperelastic potentials for 1D problems of bimodular materials

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A family of one parametric infinitely differentiable hyperelastic potentials for three-dimensional infinitesimal problems of bimodular isotropic materials is constructed, yielding a set of uniform approximations to the discontinuous stepwise elastic modulus adopted in the original one-dimensional bimodular formulation. The introduced potentials enable either analytical solutions or construction of the explicit governing equations for a number of static and dynamic problems. Theorem of convergence to the discontinuous bimodular modulus is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ambartsumyan, S.A.: The basic equations and relations of the different-modulus theory of elasticity of an anisotropic body. Mech. Solids 4(3), 48–56 (1969)

    Google Scholar 

  2. Bert, C.W.: Models for fibrous composites with different properties in tension and compression. J. Eng. Mater. Technol. 99(4), 344–349 (1977)

    Google Scholar 

  3. Bert, C.W., Kumar, M.: Vibration of cylindrical shells of bimodulus composite material. Compos. Mater. 81, 107–121 (1982)

    Google Scholar 

  4. Bert, C.W., Reddy, J.N., Chao, W.C., Reddy, V.S.: Vibration of thick rectangular plates of bimodulus composite material. ASME J. Appl. Mech. 48, 371–376 (1981)

    Google Scholar 

  5. Bruno, D., Lato, S., Sacco, E.: Nonlinear analysis of bimodular composite plates under compression. Comput. Mech. 14, 28–37 (1994)

    Google Scholar 

  6. Caporale, A., et al.: Critical surfaces for adobe masonry: Micromechanical approach. Compos. Part B Eng. 56, 790–796 (2014)

    Google Scholar 

  7. Cacciafesta, F., D’Ancona, P., Lucà, R.: A limiting absorption principle for the Helmholtz equation with variable coefficients. J. Spectr. Theory 8(4), 1349–1392 (2018)

    MathSciNet  Google Scholar 

  8. Cellier, F.E., Kofman, E.: Continuous System Simulation. Springer Science & Business Media, Berlin (2006)

    Google Scholar 

  9. Djeran-Maigre, I., et al.: Velocities, dispersion, and energy of SH-waves in anisotropic laminated plates. Acoust. Phys. 60(2), 200–207 (2014)

    Google Scholar 

  10. Du, L., Li, F., Liu, Q.: A study on determination of application limits of bimodulus calculation using spherical stress tensor method. J. Reinf. Plast. Compos. 36(7), 479–490 (2017)

    Google Scholar 

  11. Gao, J., Huang, P., Yao, W.: Analytical and numerical study of temperature stress in the bi-modulus thick cylinder. Struct. Eng. Mech. 64(1), 81–92 (2017)

    Google Scholar 

  12. Gavrilov, S.N., Herman, G.C.: Wave propagation in a semi-infinite heteromodular elastic bar subjected to a harmonic loading. J. Sound Vib. 331(20), 4464–4480 (2012)

    Google Scholar 

  13. Goldstein, R.V., et al.: The modified Cam-Clay (MCC) model: cyclic kinematic deviatoric loading. Arch. Appl. Mech. 86(12), 2021–2031 (2016)

    Google Scholar 

  14. Goldstein, R.V., et al.: Long-wave asymptotics of Lamb waves. Mech. Solids 52(6), 700–707 (2017)

    Google Scholar 

  15. Grazzini, R., Misseri, G., Rovero, L.: A bi-modulus material model for bending test on NHL3.5 lime mortar. Materials 16, 486 (2023)

    Google Scholar 

  16. Green, A.E., Mkrtichian, J.A.: Elastic solids with different moduli in tension and compression. J. Elast. 7(4), 369–386 (1977)

    Google Scholar 

  17. Guo, Y., et al.: Theoretical study on thermal stresses of metal bars with different moduli in tension and compression. Metals 12(2), 347 (2022)

    Google Scholar 

  18. Hemmerle, A., Schröter, M., Goehring, L.: A cohesive granular material with tunable elasticity. Sci. Rep. 6, 35650 (2016)

    Google Scholar 

  19. Huang, W., et al.: Semi-infinite structure analysis with bimodular materials with infinite element. Materials 15(2), 641 (2022)

    Google Scholar 

  20. Ilyashenko, A.V., et al.: Pochhammer-Chree waves: polarization of the axially symmetric modes. Arch. Appl. Mech. 88, 1385–1394 (2018)

    Google Scholar 

  21. Jiang, K., et al.: Study of the frequency response of the block–rock mass with bimodulus characteristics. IOP Conf. Series: Earth Environ. Sci. 570, 052006 (2020)

    Google Scholar 

  22. Jones, R.M.: Stress-strain relations for materials with different moduli in tension and compression. AIAA J. 15(1), 16–23 (1977)

    Google Scholar 

  23. Khan, A.H., Patel, B.P.: Nonlinear forced vibration response of bimodular laminated composite plates. Compos. Struct. 108, 524–537 (2014)

    Google Scholar 

  24. Khan, K., Patel, B.P., Nath, Y.: Free and forced vibration characteristics of bimodular composite laminated circular cylindrical shells. Compos. Struct. 126, 386–397 (2015)

    Google Scholar 

  25. Kravtsov, A.V., et al.: Finite element models in Lamb’s problem. Mech. Solids 46, 952–959 (2011)

    Google Scholar 

  26. Krylov, V.V.: Acoustic black holes for flexural waves: a smart approach to vibration damping. Procedia Eng. 199, 56–61 (2017)

    Google Scholar 

  27. Kuznetsov, S.V.: “Forbidden” planes for Rayleigh waves. Quart. Appl. Math. 60(1), 87–97 (2002)

    MathSciNet  Google Scholar 

  28. Kuznetsov, S.V.: Subsonic Lamb waves in anisotropic plates. Quart. Appl. Math. 60(3), 577–587 (2002)

    MathSciNet  Google Scholar 

  29. Kuznetsov, S.V.: Abnormal dispersion of flexural Lamb waves in functionally graded plates. Zeit. Angew. Math. Phys. 70(3), 89 (2019)

    MathSciNet  Google Scholar 

  30. Kuznetsova, M., Khudyakov, M., Sadovskii, V.: Wave propagation in continuous bimodular media. Mech. Adv. Mater. Struct. 29(21), 3147–3162 (2022)

    Google Scholar 

  31. Lax, P.D.: Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. SIAM, Philadelphia (1972)

    Google Scholar 

  32. Lebon, F., Rizzoni, R.: On the emergence of adhesion in asymptotic analysis of piecewise linear anisotropic elastic bonded joints. Europ. J. Mech. A/Solids 93, 104512 (2022)

    MathSciNet  Google Scholar 

  33. Li, S., et al.: Hybrid asynchronous absorbing layers based on Kosloff damping for seismic wave propagation in unbounded domains. Comp. Geotech. 109, 69–81 (2019)

    Google Scholar 

  34. Lucchesi, M., Pagni, A.: Longitudinal oscillations of bimodular rods. Int. J. Struct. Stab. Dynam. 5(1), 37–54 (2005)

    MathSciNet  Google Scholar 

  35. Makse, H., Gland, N., Johnson, D., Schwartz, L.: Granular packings: Nonlinear elasticity, sound propagation, and collective relaxation dynamics. Phys. Rev. E 70, 061302 (2004)

    Google Scholar 

  36. Manfouz, I.A., Badrakhan, F.: Chaotic behavior of some piecewise-linear systems. Part I: systems with set-up spring or with unsymmetrical elasticity. J. Sound Vib. 143, 255–288 (1990)

    Google Scholar 

  37. Misseri, G., Rovero, L.: Rammed earth as bi-modulus material: Experimental and analytical investigations through Euler-Bernoulli and Timoshenko beam models. Int. J. Mason. Res. Innov. 7, 482–503 (2022)

    Google Scholar 

  38. Moon, F.C.: Chaotic Vibrations. John Wiley & Sons, New York (1987)

    Google Scholar 

  39. Ostrovsky, A.: Wave processes in media with strong acoustic nonlinearity. J. Acoust. Soc. Am. 90, 3332–3338 (1991)

    Google Scholar 

  40. Ostrovsky, L.A., Starobinets, I.M.: Transitions and statistical characteristics of vibrations in a bimodular oscillator. Chaos 5(3), 496–500 (1995)

    Google Scholar 

  41. Pan, Q.X., Zheng, J.L., Wen, P.H.: Bi-modular material fracture analysis by finite element method. Theor. Appl. Fract. Mech. 105, 102424 (2020)

    Google Scholar 

  42. Patel, H.P., Turner, J.L., Walter, J.D.: Radial tire cord-rubber composites. Rubber Chem. Technol. 49, 1095–1110 (1976)

    Google Scholar 

  43. Patel, S., Martin, C.D.: Application of flattened Brazilian test to investigate rocks under confined extension. Rock Mech. Rock Eng. 51, 3719–3736 (2018)

    Google Scholar 

  44. Qiu, Y., et al.: An improved numerical method for calculating mechanical properties of bi-modulus sandwich composite structures. Ocean Eng. 250, 110998 (2022)

    Google Scholar 

  45. Rosakis, P., Notbohm, J., Ravichandran, G.: A model for compression-weakening materials and the elastic fields due to contractile cells. J. Mech. Phys. Solids 85, 16–32 (2015)

    MathSciNet  Google Scholar 

  46. Royer, D., Dieulesaint, E.: Elastic Waves in Solids 1. Springer, Free and Guided Propagation, NY (1996)

    Google Scholar 

  47. Sacco, E., Reddy, J.N.: A constitutive model for bimodular materials with an application to plate bending. J. Appl. Mech. 59(1), 220–221 (1992)

    Google Scholar 

  48. Saint-Venant, B.: Resume des Lecons Donnees a Ecole des Ponts et Chaussees sur L’application de la Mecanique a l’etablissement des Constructions et des Machines, 3rd ed.; Dunod: Paris, France, Vol. 1, Chapter 1-IV, pp. 173–178 (1864)

  49. Seldin, E.J.: Stress-strain properties of polycrystalline graphites in tension and compression at room temperature. Carbon 4, 171–191 (1966)

    Google Scholar 

  50. Shapiro, G.: Deformation of bodies with different tensile and compressive strengths (stiffnesses). Mech. Solids 1(2), 85–86 (1966)

    Google Scholar 

  51. Shaw, S.W., Holmes, P.J.: A periodically forced piecewise linear oscillator. J. Sound Vib. 90, 129–155 (1983)

    MathSciNet  Google Scholar 

  52. Shulman, J.N.: Chaos in piecewise-linear system. Phys. Rev. Ser. A 28, 477–479 (1983)

    Google Scholar 

  53. Sun, J.Y., et al.: A review on the research of mechanical problems with different moduli in tension and compression. J. Mech. Sci. Technol. 24, 1845–1854 (2010)

    Google Scholar 

  54. Tabaddor, F.: Two-dimensional bi-linear orthotropic elastic materials. J. Compos. Mater. 3, 725–727 (1969)

    Google Scholar 

  55. Terentjeva, E.O., et al.: Planar internal Lamb problem: Waves in the epicentral zone of a vertical power source. Acoust. Phys. 61(3), 356–367 (2015)

    Google Scholar 

  56. Timoshenko, S.P.: Strength of Materials. Part II, 3rd ed.; McMillan & Co.: London, UK (1956)

  57. Truesdell, C.: General and exact theory of waves in finite elastic strain. Arch. Rat. Mech. Anal. 8, 263–296 (1961)

    MathSciNet  Google Scholar 

  58. Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics. Springer, Berlin, Heidelberg (2004)

    Google Scholar 

  59. Trujillo, L., Peniche, F., Sigalotti, L.D.G.: Derivation of a Schrödinger-like equation for elastic waves in granular media. Granul. Matter 12, 417–436 (2010)

    Google Scholar 

  60. Wang, T., Ye, J.: Elastoplastic analytical solution of circular ring expansion problem for bi-modulus material based on SMP yield criterion. Bull. Eng. Geol. Environ. 81, 11 (2022)

    Google Scholar 

  61. Wesolowski, Z.: Elastic material with different elastic constants in two regions of variability of deformation. Arch. Mech. Polish Acad. Sci. 21(4), 449–468 (1969)

    Google Scholar 

  62. Zemanek, J.: An experimental and theoretical investigation of elastic wave propagation in a cylinder. J. Acoust. Soc. Amer. 51, 265–283 (1972)

    Google Scholar 

  63. Zhang, L., et al.: A stabilized complementarity formulation for nonlinear analysis of 3D bimodular materials. Acta Mech. Sin. 32, 481–490 (2016)

    MathSciNet  Google Scholar 

  64. Zhang, X., Garijo, L., Ruiz, G., Ortega, J.: Loading-rate effect on the fracture response of natural hydraulic and aerial-lime mortars. J. Mater. Civ. Eng. 32, 04020258 (2020)

    Google Scholar 

  65. Zhou, N., Liu, K.: A tunable high-static–low-dynamic stiffness vibration isolator. J. Sound Vibr. 329(9), 1254–1273 (2010)

    Google Scholar 

Download references

Funding

The work was funded by the Ministry of Science and Higher Education of RF, grant FSWG-2023-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Kuznetsov.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, S.V. Smooth hyperelastic potentials for 1D problems of bimodular materials. Acta Mech 235, 1911–1920 (2024). https://doi.org/10.1007/s00707-023-03827-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03827-5

Navigation