Skip to main content

Advertisement

Log in

Assessing rockfall susceptibility in steep and overhanging slopes using three-dimensional analysis of failure mechanisms

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Rockfalls strongly influence the evolution of steep rocky landscapes and represent a significant hazard in mountainous areas. Defining the most probable future rockfall source areas is of primary importance for both geomorphological investigations and hazard assessment. Thus, a need exists to understand which areas of a steep cliff are more likely to be affected by a rockfall. An important analytical gap exists between regional rockfall susceptibility studies and block-specific geomechanical calculations. Here we present methods for quantifying rockfall susceptibility at the cliff scale, which is suitable for sub-regional hazard assessment (hundreds to thousands of square meters). Our methods use three-dimensional point clouds acquired by terrestrial laser scanning to quantify the fracture patterns and compute failure mechanisms for planar, wedge, and toppling failures on vertical and overhanging rock walls. As a part of this work, we developed a rockfall susceptibility index for each type of failure mechanism according to the interaction between the discontinuities and the local cliff orientation. The susceptibility for slope parallel exfoliation-type failures, which are generally hard to identify, is partly captured by planar and toppling susceptibility indexes. We tested the methods for detecting the most susceptible rockfall source areas on two famously steep landscapes, Yosemite Valley (California, USA) and the Drus in the Mont-Blanc massif (France). Our rockfall susceptibility models show good correspondence with active rockfall sources. The methods offer new tools for investigating rockfall hazard and improving our understanding of rockfall processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abellan A, Vilaplana JM, Calvet J, Blanchard J (2010) Detection and spatial prediction of rockfalls by means of terrestrial laser scanning modelling. Geomorphology 119:162–171

    Article  Google Scholar 

  • Abellan A, Oppikofer T, Jaboyedoff M, Rosser NJ, Lim M, Lato MJ (2014) Terrestrial laser scanning of rock slope instabilities. Earth Surf Process Landforms 39:80–97

    Article  Google Scholar 

  • Aksoy H, Ercanoglu M (2006) Determination of the rockfall source in an urban settlement area by using a rule-based fuzzy evaluation. NHESS 6:941–954

    Google Scholar 

  • Bahat, D., Grossenbacher, K., And Karasaki, K., 1999. Mechanism of exfoliation joint formation in granitic rocks, Yosemite National Park. J Struct Geol, 21, 85–96

    Article  Google Scholar 

  • Baillifard F, Jaboyedoff M, Sartori M (2003) Rockfall hazard mapping along a mountainous road in Switzerland using a GIS-based parameter rating approach. NHESS 3:435–442

    Google Scholar 

  • Barlow J, Lim M, Rosser N, Petley D, Brain M, Norman E, Geer M (2012) Modeling cliff erosion using negative power law scaling of rockfalls. Geomorphology 139:416–424

    Article  Google Scholar 

  • Bateman PC (1992) Plutonism in the central part of the Sierra Nevada batholith, California (No.1483)

  • Besl P, Mckay N (1992) A method for registration of 3-d shapes. IEEE Trans Pattern Anal Mach Intell 14:239–256

    Article  Google Scholar 

  • Bieniawski ZT (1973) Engineering classification of jointed rock masses. Civil Engineer in South Africa 15(12)

  • Bieniawski ZT (1979) The geomechanics classification in rock engineering applications, ISRM Montreux, Proc. 4th Int. Cong. on Rock Mech., Balkema, Rotterdam, pp 55–95

  • Boeckli L, Brenning A, Gruber S, Noetzli J (2012) Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics. Cryosphere 6:807–820. https://doi.org/10.5194/tc-6-807-2012

    Article  Google Scholar 

  • Brideau MA, Pedrazzini A, Stead D, Froese C, Jaboyedoff M, van Zeyl D (2011) Three-dimensional slope stability analysis of South Peak, Crowsnest Pass, Alberta, Canada. Landslides 8(2):139–158

    Article  Google Scholar 

  • Brody AG, Pluhar CJ, Stock GM, Greenwood WJ (2015) Near-surface geophysical imaging of a talus deposit in Yosemite Valley, California. Environ Eng Geosci 21(2):111–127

  • Brunetti MT, Guzzetti F, Rossi M (2009) Probability distributions of landslide volumes. Nonlinear Process Geophys 16(2):179–188

    Article  Google Scholar 

  • Bussy F, Von Raumer J (1994) U–Pb geochronology of Palaeozoic magmatic events in the Mont-Blanc Crystalline Massif, Western Alps. Schweizerische Mineralogische Petrographische Mitteilungen 74:514–515

    Google Scholar 

  • Calkins FC, Huber NK, Roller JA (1985) Geologic bedrock map of Yosemite Valley, Yosemite National Park, California. US Geol Surv, Map I-1639

  • Chen Y, Medioni G (1992) Object modelling by registration of multiple range images. Image Vis Comput 10:145–155. https://doi.org/10.1016/0262-8856(92)90066-C

    Article  Google Scholar 

  • Collins B, Sitar N (2008) Processes of coastal bluff erosion in weakly lithified sands, Pacifica, California, USA. Geomorphology 97:483–501

    Article  Google Scholar 

  • Collins BD, Stock GM (2016) Rockfall triggering by cyclic thermal stressing of exfoliation fractures. Nat Geosci 9:395–400. https://doi.org/10.1038/ngeo2686

    Article  Google Scholar 

  • Copons R, Vilaplana JM (2008) Rockfall susceptibility zoning at a large scale: from geomorphological inventory to preliminary land use planning. Eng Geol 102(3):142–151

    Article  Google Scholar 

  • Crosta GB, Agliardi F (2003) A new methodology for physically based rockfall hazard assessment. Nat Hazards Earth Syst Sci 3:407–422

    Article  Google Scholar 

  • Deline P et al (2006) Permafrost and rock falls in high mountain: the Drus (Mont Blanc massif, France). Geophys Res Abstr 8:02033

    Google Scholar 

  • Dershowitz WS, Einstein HH (1988) Characterizing rock joint geometry with joint system models. Rock Mech Rock Eng 21:21–51

    Article  Google Scholar 

  • Dorren LKA, Seijmonsbergen AC (2003) Comparison of three GIS-based models for predicting rockfall runout zones at a regional scale. Geomorphology 56(1–2):49–64

    Article  Google Scholar 

  • Dunham L, Wartman J, Olsen MJ, O’Banion M, Cunningham K (2017) Rockfall Activity Index (RAI): a lidar-derived, morphology-based method for hazard assessment. Eng Geol 221:184–192

  • Dussauge C, Grasso JR, Helmstetter A (2003) Statistical analysis of rockfall volume distributions: Implications for rockfall dynamics. J Geophys Res Solid Earth 108(B6). https://doi.org/10.1029/2001JB000650

  • Eberhardt E (2003) Rock slope stability analysis–utilization of advanced numerical techniques. Earth and Ocean sciences at UBC

  • Einstein HH (1988) Special lecture: landslide risk assessment procedure. MIT, USA, pp 1075–1090

    Google Scholar 

  • Epard JL (1990) La nappe de Morcles au sud-ouest du Mont-Blanc (Doctoral dissertation, Université de Lausanne)

  • Evans SG, Hungr O (1993) The assessment of rockfall hazard at the base of talus slopes. Can Geotech J 30(4):620–636

    Article  Google Scholar 

  • Fanti R, Gigli G, Lombardi L, Tapete D, Canuti P (2013) Terrestrial laser scanning for rockfall stability analysis in the cultural heritage site of Pitigliano (Italy). Landslides 10(4):409–420

    Article  Google Scholar 

  • Ferrero AM, Forlani G, Roncella R, Voyat HI (2009) Advanced geostructural survey methods applied to rock mass characterization. Rock Mech Rock Eng 42:631–665

    Article  Google Scholar 

  • Fischer L, Amann F, Moore JR, Huggel C (2010) Assessment of periglacial slope stability for the 1988 Tschierva rock avalanche (Piz Morteratsch, Switzerland). Eng Geol 116(1):32–43

    Article  Google Scholar 

  • Frattini P, Crosta G, Carrara A, Agliardi F (2008) Assessment of rockfall susceptibility by integrating statistical and physically-based approaches. Geomorphology 94:419–437

    Article  Google Scholar 

  • Gigli G, Casagli N (2011) Semi-automatic extraction of rock mass structural data from high resolution LIDAR point clouds. Int J Rock Mech Min Sci 48(2):187–198

    Article  Google Scholar 

  • Gigli G, Morelli S, Fornera S, Casagli N (2012) Terrestrial laser scanner and geomechanical surveys for the rapid evaluation of rock fall susceptibility scenarios. Landslides:1–14. https://doi.org/10.1007/s10346-012-0374-0

  • Gischig V, Amann F, Moore JR, Loew S, Eisenbeiss H, Stempfhuber W (2011) Composite rock slope kinematics at the current Randa instability, Switzerland, based on remote sensing and numerical modeling. Eng Geol 118:37–53

    Article  Google Scholar 

  • Gokceoglu C, Sonmez H, Ercanoglu M (2000) Discontinuity controlled probabilistic slope failure risk maps of the Altindag (settlement) region in Turkey. Eng Geol 55:277–296

    Article  Google Scholar 

  • Goodman RE & Bray JW (1976) Toppling of rock slopes. ASCE Specialty Conference on Rock Engineering for Foundations and Slopes, Boulder Colorado 2:201–234

  • Goodman RE, Shi GH (1985) Block theory and its application to rock engineering. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Grenon M, Hadjigeorgiou J (2008) A design methodology for rock slopes susceptible to wedge failure using fracture system modelling. Eng Geol 96:78–93

    Article  Google Scholar 

  • Guenther A, Carstensen A, Pohl W (2004) Automated sliding susceptibility mapping of rock slopes. Nat Hazards Earth Syst Sci 4:95–102

    Article  Google Scholar 

  • Guenther A, Wienhöfer J, Konietzky H (2012) Automated mapping of rock slope geometry, kinematics and stability with RSS-GIS. Nat Hazards 61(1):29–49

    Article  Google Scholar 

  • Guérin A, Abellán A, Matasci B, Jaboyedoff M, Derron M-H, and Ravanel L (2017) Brief communication: 3D reconstruction of a collapsed rock pillar from web-retrieved images and terrestrial LiDAR data—the 2005 event of the West face of the Drus (Mont-Blanc massif). Nat Hazards Earth Syst Sci Discuss in review.https://doi.org/10.5194/nhess-2016-316

  • Guzzetti F, Reichenbach P, Wieczorek GF (2003) Rockfall hazard and risk assessment in the Yosemite Valley, California, USA. NHESS 3:491–503

    Google Scholar 

  • Hales T. C., And Roering J. J., (2007), Climatic controls on frost cracking and implications for the evolution of bedrock landscapes, Journal of Geophysical Research, 112, F02033, https://doi.org/10.1029/2006JF000616

    Article  Google Scholar 

  • Harp EL, Noble MA (1993) An engineering rock classification to evaluate seismic rock-fall susceptibility and its application to the Wasatch Front. Bull Assoc Eng Geol 30(3)

  • Hasler A, Gruber S, Beutel J (2012) Kinematics of steep bedrock permafrost. J Geophys Res Earth Surf 117(F1). https://doi.org/10.1029/2011JF001981

  • Hoek E, Bray JW (1981) Rock slope engineering, 3rd edn. Institution of Mining and Metallurgy, London

    Google Scholar 

  • Huber NK (1987) The geologic story of Yosemite National Park (No. 1595). USGPO, Washington, D.C

  • Hudson JA, Priest SD (1983) Discontinuity frequency in rock masses. Int J Rock Mech Min Sci Geomech Abstr 20(2):73–89

    Article  Google Scholar 

  • Humair F, Pedrazzini A, Epard JL, Froese CR, Jaboyedoff M (2013) Structural characterization of Turtle Mountain anticline (Alberta, Canada) and impact on rock slope failure. Tectonophysics 605:133–148

    Article  Google Scholar 

  • Hungr O, Evans S, Hazzard J (1999) Magnitude and frequency of rock falls along the main transportation corridors of south-western British Columbia. Can Geotech J 36:224–238

    Article  Google Scholar 

  • Irigaray C, Fernández T, Chacón J (2003) Preliminary rock-slope-susceptibility assessment using GIS and the SMR classification. Nat Hazards 30(3):309–324

    Article  Google Scholar 

  • ISRM (1978) Suggested methods for the quantitative description of discontinuities in rock masses. Int J Rock Mech Min Sci 15:319–368. https://doi.org/10.1016/0148-9062(78)91472-9

    Article  Google Scholar 

  • Jaboyedoff M, Philippossian F, Mamin M, Carro C and Rouiller J-D (1996) Distribution spatiale des discontinuités dans une falaise, Cahier du PNR31, VDF 90 pp

  • Jaboyedoff M, Baillifard F, Philippossian F, Rouiller JD (2004) Assessing fracture occurrence using weighted fracturing density: a step towards estimating rock instability. Nat Hazards Earth Syst Sci 4:83–93

    Article  Google Scholar 

  • Jaboyedoff M, Metzger R, Oppikofer T, Couture R, Derron M-H, Locat J, Turmel D (2007) New insight techniques to analyze rock-slope relief using DEM and 3D–imaging cloud points: COLTOP-3Dsoftware. Proceedings of the 1st Canada–U.S. Rock Mechanics Symposium

  • Jaboyedoff M, Couture R, Locat P (2009) Structural analysis of Turtle Mountain (Alberta) using digital elevation model: toward a progressive failure. Geomorphology 103(1):5–16

    Article  Google Scholar 

  • Jaboyedoff M, Oppikofer T, Abellán A, Derron MH, Loye A, Metzger R, Pedrazzini A (2012) Use of LIDAR in landslide investigations: a review. Nat Hazards 61(1):5–28

    Article  Google Scholar 

  • Krautblatter M, Funk D, Günzel FK (2013) Why permafrost rocks become unstable: a rock–ice-mechanical model in time and space. Earth Surf Process Landf 38(8):876–887

    Article  Google Scholar 

  • Lato M, Vöge M (2012) Automated mapping of rock discontinuities in 3D lidar and photogrammetry models. Int J Rock Mech Min Sci 54:150–158

    Google Scholar 

  • Lato M, Diederichs MS, Hutchinson DJ, Harrap R (2009) Optimization of LIDAR scanning and processing for automated structural evaluation of discontinuities in rockmasses. Int J Rock Mech Min Sci 46:194–199

    Article  Google Scholar 

  • Lato MJ, Diederichs MS, Hutchinson DJ (2012) Evaluating roadside rockmasses for rockfall hazards using LiDAR data: optimizing data collection and processing protocols. Nat Hazards 60:831–864

    Article  Google Scholar 

  • Leith K, Moore JR, Amann F, Loew S (2014) In situ stress control on microcrack generation and macroscopic extensional fracture in exhuming bedrock. J Geophys Res Solid Earth 119:594–615. https://doi.org/10.1002/2012JB009801

    Article  Google Scholar 

  • Loye A, Jaboyedoff M and Pedrazzini A (2009) Identification of potential rockfall source areas at regional scale using a DEM-based quantitative geomorphometric analysis. NHESS In Review

  • Markland JT (1972) A useful technique for estimating the stability of rock slope when the rigid wedge sliding type of failure is expected, rock mechanics research report 19. Imperial College London, London

  • Martel SJ (2006) Effect of topographic curvature on near-surface stresses and application to sheeting discontinuities. Geophys Res Lett 33:L01308

    Article  Google Scholar 

  • Martel SJ (2011) Mechanics of curved surfaces, with application to surface-parallel cracks. Geophys Res Lett 38(L20303). https://doi.org/10.1029/ 2011GL049354

  • Matasci B, Jaboyedoff M, Ravanel L, Deline P (2015) Stability assessment, potential collapses and future evolution of the west face of the Drus (3,754 m a.s.l., Mont Blanc Massif). In: Lollino G et al (eds) Engineering Geology for Society and Territory—volume 2. © Springer International Publishing, Switzerland. https://doi.org/10.1007/978-3-319-09057-3_134

    Google Scholar 

  • Matsuoka N, Sakai H (1999) Rockfall activity from an alpine cliff during thawing periods. Geomorphology 28:309–328

    Article  Google Scholar 

  • Mazzoccola DF, Hudson JA (1996) A comprehensive method of rock mass characterization for indicating natural slope instability. Q J Eng Geol Hydroge 29:37

    Article  Google Scholar 

  • Messenzehl K, Meyer H, Otto J-C, Hoffmann T, Dikau R (2016) Regional-scale controls on the spatial activity of rockfalls (Turtmann Valley, Swiss Alps)—a multivariate modeling approach. Geomorphology. Available online 22 January 2016, ISSN 0169-555X. https://doi.org/10.1016/j.geomorph.2016.01.008

  • Michoud C., Derron M.-H., Horton P., Jaboyedoff M., Baillifard F.-J., Loye A., Nicolet P., Pedrazzini A., And Queyrel A., (2012), Rockfall hazard and risk assessments along roads at a regional scale: example in Swiss Alps, Nat Hazards Earth Syst Sci, 12, 615–629, https://doi.org/10.5194/nhess-12-615-2012

  • Molnar P, Anderson RS, Anderson SP (2007) Tectonics, fracturing of rock, and erosion. J Geophys Res Earth Surf 112:F3. https://doi.org/10.1029/2005JF000433

    Article  Google Scholar 

  • Moore JR, Sanders JW, Dietrich WE, Glaser SD (2009) Influence of rockmass strength on the erosion rate of alpine cliffs. Earth Surf Process Landf 34:1339–1352

    Article  Google Scholar 

  • Nex F, Remondino F (2014) UAV for 3D mapping applications: a review. Appl Geomatics 6(1):1–15

    Article  Google Scholar 

  • Niethammer U, James MR, Rothmund S, Travelletti J, Joswig M (2012) UAV-based remote sensing of the Super-Sauze landslide: evaluation and results. Eng Geol 128:2–11

    Article  Google Scholar 

  • Norrish N, Wyllie D (1996) Rock slope stability analysis, in landslides investigation and mitigation. In: Turner K, Schuster R (eds) Transportation Research Board Special Report 247. National Academy Press, Washington D.C., pp 391–425

    Google Scholar 

  • Oppikofer T, Jaboyedoff M, Keusen HR (2008) Collapse at the eastern Eiger flank in the Swiss alps. Nat Geosci 1:531–535. https://doi.org/10.1038/ngeo258

    Article  Google Scholar 

  • Oppikofer T, Jaboyedoff M, Pedrazzini A, Derron M-H, Blikra L (2011) Detailed DEM analysis of a rockslide scar to characterize the basal sliding surface of active rockslides. J Geophys Res 116:22

    Article  Google Scholar 

  • Paronuzzi P, Serafini W (2009) Stress state analysis of a collapsed overhanging rock slab: a case study. Eng Geol 108(2009):65–75. https://doi.org/10.1016/j.enggeo.2009.06.019

    Article  Google Scholar 

  • Peck D (2002) Geologic map of the Yosemite quadrangle, central sierra Nevada, California, U.S. Geol Surv Geol Investig Ser Map I-2751, scale 1:62,500

  • Priest SD (1993) Discontinuity analysis for rock engineering. Chapman and Hall, London 473 pp

    Book  Google Scholar 

  • Rabatel A, Deline P, Jaillet S, Ravanel L (2008) Rock falls in high-alpine rock walls quantified by terrestrial lidar measurements: a case study in the Mont Blanc area. Geophys Res Lett 35:L10502

    Article  Google Scholar 

  • Ravanel L, Deline P (2008) La face ouest des Drus (massif du Mont-Blanc): évolution de l’instabilité d’une paroi rocheuse dans la haute montagne alpine depuis la fin du petit âge glaciaire. Géomorphologie: Relief, Processus, Environnement 14(4):261–272

  • Ravanel L, Deline P (2011) Climate influence on rockfalls in high-Alpine steep rockwalls: the north side of the Aiguilles de Chamonix (Mont Blanc massif) since the end of the ‘Little Ice Age’. The Holocene 21(2):357–365

    Article  Google Scholar 

  • Ravanel L, Allignol F, Deline P, Gruber S, Ravello M (2010) Rock falls in the Mont Blanc Massif in 2007 and 2008. Landslides 7(4):493–501

    Article  Google Scholar 

  • Riquelme AJ, Abellán A, Tomás R, Jaboyedoff M (2014) A new approach for semi-automatic rock mass joints recognition from 3D point clouds. Comput Geosci 68:38–52

    Article  Google Scholar 

  • Romana M (1985) New adjustment ratings for application of Bieniawski classification to slopes. Proceedings of Int. Symp. Role of Rock Mech., ISRM, Zacatecas, pp 49–53

  • Romana M (1993) A geomechanical classification for slopes: slope mass rating. Comprehensive rock engineering 3(1):575–599

  • Rosser NJ, Lim N, Petley DN, Dunning S, Allison RJ (2007) Patterns of precursory rockfall prior to slope failure. J Geophys Res 112(F4). https://doi.org/10.1029/2006JF000642

  • Royan MJ, Abellán A, Jaboyedoff M, Vilaplana JM, Calvet J (2014) Spatio-temporal analysis of rockfall pre-failure deformation using terrestrial LiDAR. Landslides 11(4):697–709

    Article  Google Scholar 

  • Selby MJ (1982) Controls on the stability and inclinations of hillslopes formed on hard rock. Earth Surf Proc Land 7:449–467

    Article  Google Scholar 

  • Slob S, Hack R (2004) 3D terrestrial laser scanning as a new field measurement and monitoring technique. In: Engineering geology for infrastructure planning in Europe: a European perspective, Lectures Notes in Earth Sciences, Springer, Berlin/Heidelberg 104:179–189

  • Stead D, Wolter A (2015) A critical review of rock slope failure mechanisms: the importance of structural geology. J Struct Geol 74:1–23

    Article  Google Scholar 

  • Steck A, Bigioggero B, Dal Piaz GV, Escher A, Martinotti G, & Masson H (1999) Carte tectonique des Alpes de Suisse occidentale et des régions avoisinantes 1:100’000. In Carte géologique spéciale (Vol. 123). Bern: Service hydrologique et géologique national

  • Stock GM, and Uhrhammer RA (2010) Catastrophic rock avalanche 3600 years B.P. from El Capitan, Yosemite Valley, California, Earth Surface Processes and Landforms 35:941–951

  • Stock GM, Bawden GW, Green JK, Hanson E, Downing G, Collins BD, Bond S, Leslar M (2011) High-resolution three-dimensional imaging and analysis of rock falls in Yosemite Valley, California. Geosphere 7:573–581

    Article  Google Scholar 

  • Stock GM, Martel SJ, Collins BD, Harp EL (2012) Progressive failure of sheeted rock slopes: the 2009-2010 Rhombus Wall rock falls in Yosemite Valley, California, USA. Earth Surf Process Landforms 37:546–561

    Article  Google Scholar 

  • Stock GM, Collins BD, Santaniello DJ, Zimmer VL, Wieczorek GF, Snyder JB (2013) Historical rock falls in Yosemite National Park (1857–2011). U.S. Geological Survey Data Series 746

  • Stock GM, Luco N, Collins BD, Harp EL, Reichenbach P, Frankel KL (2014) Quantitative rock-fall hazard and risk assessment for Yosemite Valley, Yosemite National Park, California. U.S Geological Survey Scientific Investigatoins Report 2014-5129, 52 p. http://www.pubs.usgs.gov/sir/2014/5129/

  • Strahler AN (1954) Quantitative geomorphology of erosional landscapes. Compt Rend 19th Intern Geol Cong, Sec 13:341–354

    Google Scholar 

  • Sturzenegger M, Stead D (2009) Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Eng Geol 106:163–182

    Article  Google Scholar 

  • Sturzenegger M, Stead D, Elmo D (2011) Terrestrial remote sensing-based estimation of mean trace length trace intensity and block size/shape. Eng Geol 119(3–4):96–111. https://doi.org/10.1016/j.enggeo.2011.02.005

    Article  Google Scholar 

  • Terzaghi K (1962) Stability of slopes on hard unweathered rock. Geotechnique 12:251–263

    Article  Google Scholar 

  • Tsesarsky M, Hatzor YH (2009) Kinematics of overhanging slopes in discontinuous rock. J Geotech Geoenviron Eng 135:1122–1129. https://doi.org/10.1061/ASCEGT.1943-5606.0000049

    Article  Google Scholar 

  • Vangeon J-M, Hantz D, Dussauge C (2001) Rockfall predictibility: a probabilistic approach combining historical and geomechanical studies. Revue Française de Gotechnique 95(96):143–154

    Article  Google Scholar 

  • Varnes DJ (1978) Slope movements: types and processes. In: Schuster RL, Krizek RJ (eds) Landslide analysis and control. Transportation Research Board, Special Report No. 176, Washington, DC, pp 11–33

  • Voege M, Lato MJ, Diederichs MS (2013) Automated rockmass discontinuity mapping from 3-dimensional surface data. Eng Geol 164:155–162

    Article  Google Scholar 

  • Wickens EH, Barton NR (1971) The application of photogrammetry to the stability of excavated rock slopes. Photogram Rec 7(37):46–54

    Article  Google Scholar 

  • Wieczorek GF, Snyder JB (1999) Rock falls from Glacier Point above Camp Curry, Yosemite National Park, California, U.S. Geological Survey Open-File Report 99–385. http://pubs.usgs.gov/of/1999/ofr-99-0385/

  • Wieczorek GF, Stock GM, Reichenbach P, Snyder JB, Borchers JW, Godt JW (2008) Investigation and hazard assessment of the 2003 and 2007 staircase falls rock falls, Yosemite National Park, California, USA. Nat Hazards Earth Syst Sci 8:421–432

    Article  Google Scholar 

  • Wyllie DC, Mah C (2004) Rock slope engineering. CRC Press

  • Zimmer V, Collins BD, Stock GM, Sitar N (2012) Rock fall dynamics and deposition: an integrated analysis of the 2009 Ahwiyah Point rock fall, Yosemite National Park, USA. Earth Surf Process Landf 37(6):680–691

    Article  Google Scholar 

Download references

Acknowledgements

We thank Eric Hanson and Greg Downing of xRez Studio for acquisition of some high-resolution panoramic images of Yosemite Valley.

Funding

The authors acknowledge the Swiss National Science Foundation (grants: 146426 and 127132), the US National Park Service, and the US Geological Survey for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Matasci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matasci, B., Stock, G.M., Jaboyedoff, M. et al. Assessing rockfall susceptibility in steep and overhanging slopes using three-dimensional analysis of failure mechanisms. Landslides 15, 859–878 (2018). https://doi.org/10.1007/s10346-017-0911-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-017-0911-y

Keywords

Navigation